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José-Vı́ctor Ŕıos-Rulla,1,∗, Frank Schorfheideb,2, Cristina Fuentes-Alberoc, Maxym
Kryshkod, Raül Santaeulàlia-Llopise
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fluctuations of hours and output. Along the way, new insights are provided in the parameter
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1. Introduction

Over the past three decades, quantitative macroeconomics has witnessed controversies about

the role of formal econometric methods. While there is some broad consensus that the neo-

classical stochastic growth model — potentially augmented by heterogeneity, various types

of frictions, and different sources of idiosyncratic as well as aggregate uncertainty — pro-

vides a useful framework for substantive empirical work, there is less consensus on how such

models should be parameterized in view of the available economic data. Following Kyd-

land and Prescott (1982), many researchers calibrate dynamic stochastic general equilibrium

(DSGE) models, whereas other researchers use formal econometric methods to parameterize

DSGE models and study their quantitative implications. The methodological controversies

between the calibration and the estimation camp are summarized, for instance, in a Journal

of Economic Perspectives symposium with contributions by Hansen and Heckman (1996),

Kydland and Prescott (1996), and Sims (1996).

Despite the use of similar theoretical frameworks that are built around a stochastic growth

model, quantitative results for specific macroeconomic questions reported in the literature

often vary dramatically. Some of this variation is seemingly associated with the choice of

empirical methods. For instance, estimates of the relative importance of technology shocks

for fluctuations in hours worked range from less than 10% to more than 65%. Similar figures

for output can be as low as 20% or as high as 100%. Among the numerous papers published

on this topic, Hansen (1985)’s calibration of a stochastic growth model with indivisible labor

yielded numbers at the high end, whereas the likelihood-based estimation of a DSGE model

with New Keynesian frictions by Gaĺı and Rabanal (2005) produced estimates at the low

end.

In this paper, we make the case that it is not the choice of quantitative methodology

(per se) that is responsible for empirical findings, but rather the implicit identification of key

parameters associated with particular calibration or estimation approaches. Thus, sources

of identification, and not a controversy over the use of formal statistical methods, should

be at the center of the debate in quantitative macroeconomics. Rather than providing

an abstract exposition, we consider a specific empirical application throughout the paper.

The neoclassical stochastic growth model with neutral and investment-specific technology

shocks and variable capital utilization is used to measure the contribution of the two types
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of technology shocks to business cycle movements of aggregate hours worked and output.

Generalizations to applications that involve more elaborate DSGE models are discussed

toward the end of the paper.

While building our case, we make three distinct contributions. First, the paper compares

how key parameters are identified in a standard calibration versus a likelihood-based esti-

mation. Since the identification in the context of a calibration of a stochastic growth model

is well understood, a particularly novel aspect of our analysis is to provide an economic in-

terpretation of the way the likelihood function extracts information about important model

parameters. The second contribution is to document the sensitivity of likelihood-based es-

timates to the inclusion of additional shocks that complete the probabilistic structure of

the DSGE model and implicitly affect the identification of key parameters. In our appli-

cation, these additional shocks are non-technology shocks, such as exogenous preference or

government spending processes. Finally, the third contribution is to use Bayesian model av-

eraging to aggregate quantitative results from the estimation of DSGE models with different

auxiliary shock specifications.

Starting with Canova and Sala (2009), the topic of identification has recently received

particular attention in the DSGE model literature, as it has become apparent that estima-

tion objective functions are often not very informative about important model parameters.

Guerron-Quintana (2010) documents how parameter estimates of a variant of the Smets-

Wouters model are affected by the choice of observables used in the Bayesian estimation.

Iskrev (2010) and Komunjer and Ng (2009) develop formal conditions for the identifiability

of DSGE model parameters based on first and second moments of model variables. The

focus of our paper is to dissect the identification assumptions underlying typical calibration

and likelihood-based estimation approaches.

To study how different empirical approaches achieve parameter identification, it is use-

ful to distinguish steady-state-related parameters, parameters that characterize the law of

motion of the exogenous shocks, and parameters that affect the endogenous propagation

mechanism but not the steady state. While steady-state related parameters are typically

identified from long-run averages, both in a calibration as well as in an estimation setting, the

identification of the other parameters is more delicate. The stochastic growth model used in

the empirical analysis requires us to identify the parameters of two technology shocks as well
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as an aggregate labor supply elasticity and the elasticity of capital utilization with respect

to interest rate changes.

The investment-specific technology shock rotates a linear transformation curve between

consumption and investment goods, and capital stock adjustments are assumed to be costless.

In turn, this shock equals the relative price of investment, and thus its parameters are

identifiable from observables without knowledge of the two elasticities. If capital utilization

is assumed to be constant, the identification of the parameters associated with the neutral

technology shock can be achieved conditional on steady-state-related parameters only. If,

on the other hand, capital utilization is variable, the identification of the neutral technology

shock parameters cannot be disentangled from the identification of one of the endogenous

propagation parameters, namely, the interest rate elasticity of capital utilization.

While calibration approaches tend to use external information to identify the labor sup-

ply elasticity, e.g., from household level data, information about the composition of hours

worked fluctuations into intensive and extensive margins, or balanced growth path restric-

tions, estimation approaches tend to extract information directly from the joint dynamics of

output and hours worked. More specifically, in our application the DSGE model incorporates

enough restrictions to identify technology shock innovations from the observables. We show

how the relative movement of labor productivity and hours, that is, prices and quantities in

the labor market, can identify the labor supply elasticity. In the variable capital utilization

model, the utilization elasticity is identified from the shape of the impulse responses.

From an econometric perspective, the probabilistic structure of the DSGE model is in-

completely specified in our application as well as many other applications. The baseline

version of our DSGE model is purely driven by technology shocks and silent with respect

to the nature of other shocks that contribute to aggregate fluctuations. Unlike the identifi-

cation implicit in a typical calibration approach, the identification scheme associated with

a likelihood-based estimation is sensitive to the completion of the probabilistic structure,

which is typically achieved by introducing additional structural shocks or measurement er-

rors. Thus, we systematically document the sensitivity of likelihood-based estimates to the

inclusion of shocks that complete the probabilistic structure of the DSGE model. The tacit

identification implications of auxiliary shocks have been a neglected topic and are likely to be

very important for large-scale DSGE models that build on the work by Smets and Wouters
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(2003, 2007).

More often than not, different methods of identifying key parameters of a DSGE model

lead to different quantitative findings. This fragility is in part due to the restrictive —and

in some dimensions misspecified— dynamic structure of the models and its inability to fit

macroeconomic time series in all dimensions. In a calibration framework, this ambiguity

can be communicated by reporting quantitative findings associated with the various plau-

sible identification schemes. In an econometric framework, the relative fit of the various

model specifications associated with different identification schemes can in principle be used

to weight different quantitative results. This weighting can be coherently implemented in

a Bayesian framework. Thus, we use model averaging to aggregate the findings from our

estimation of DSGE models with different auxiliary shock specifications. Six model specifi-

cations that differ with respect to the non-technology shocks and whether or not we impose

unit roots on the law of motion of the technology shocks are considered in the application.

The quantitative findings in the empirical application support our main methodological

point. If the labor supply elasticity is set to 0.72 to match recent micro-level evidence

provided by Heathcote et al. (2007), the fractions of hours and output fluctuations explained

by technology shocks are 9% and 26%, respectively. If the elasticity is identified by the

labor supply behavior along the intensive margin of prime age white males, the fractions

drop to 1% and 20%. If the elasticity is determined by a sufficient condition on preferences

to guarantee a balanced growth path, then the fractions increase to 29% and 33%. The

estimation can generate a similar range of results, depending on the choice of data set and

the shock specification. If the DSGE model is estimated based on observations for labor

productivity, hours worked, the relative price of investment, as well as investment, the labor

supply elasticity is around 0.1 which, translates into variance ratios of 1% for hours and

22% for output. If, on the other hand, the relative price of investment is excluded from

the observables and a government spending shock rather than a preference shock is used to

complete the probabilistic structure of the model, then the labor supply elasticity estimate

increases to 1.56, and the variance ratios rise to 22% for hours and 33% for output. Thus,

within each empirical methodology, differences among the explicit or implicit identification

of key parameters can generate a wide spectrum of quantitative results, making a convincing

case that quantitative macroeconomists from both the calibration as well as the estimation

camp should place more emphasis on searching for reliable sources of identification of key
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parameters and making them transparent to their audiences.

The remainder of this paper is organized as follows. The stochastic growth model is

presented in Section 2. We begin the empirical analysis with a restricted version of the

model in which capital utilization is constant. Section 3 reviews identification schemes for

the labor supply elasticity that are associated with standard calibration procedures. Sec-

tion 4 reports on the DSGE model estimation using state-of-the-art Bayesian techniques.

In Section 5 we allow for variable capital utilization. Recommendations for practitioners

that generalize to other models and applications are provided in Section 6: first, determine

the set of parameters that are most influential in shaping the quantitative findings; sec-

ond, consider various plausible ways of identifying these parameters; and third, incorporate

the identification schemes into your quantitative approach, be it a calibration or an econo-

metric estimation of the DSGE model. Section 7. An Online Appendix provides detailed

information on the data set, the implementation of the empirical analysis, and parameter

estimates.

2. The Model Economy

We consider what we think is the latest implementation of the plain-vanilla real business

cycles model: a stochastic growth model with two types of technology shocks and variable

capital utilization. A neutral productivity shock affects total factor productivity. The sec-

ond shock is investment-specific and shifts the slope of the transformation curve between

consumption and capital goods. Our model is very similar to the one used by Fisher (2006).

It is a simplified version of the model studied by Greenwood et al. (2000) in that we have

only one type of capital.

The model economy is populated with a continuum of households with the following

preferences:

max
{Ct,Xt,Ht,Kt+1}

IE0

[
∞∑
t=0

βt

(
lnCt − ξ

H
1+1/ν
t

1 + 1/ν

)]
. (1)

Here, Ct denotes consumption and Ht hours worked. An appealing feature of these prefer-

ences is that the parameter ν is the Frisch elasticity of substitution of labor. β is, as always,

the discount rate. ξ affects the marginal rate of substitution between consumption and
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leisure and determines steady-state hours. There is a constant returns to scale production

function given by

Ct +
1

Vt
Xt = At(utKt)

αH1−α
t . (2)

The left-hand side of (2) can be interpreted as a linear transformation curve between con-

sumption and investment goods. The slope of this curve is shifted by the investment-specific

technology disturbance Vt. The right-hand side takes the standard Cobb-Douglas form, At

is an exogenous total factor productivity (or neutral) technology process, Kt is capital, and

ut is the capital utilization. Thus, the production technology is subject to two exogenous

shocks: a standard neutral technology shock At and a sector-specific technology shock Vt.

Capital depreciates geometrically at the utilization-dependent rate δ(ut), yielding

Kt+1 = (1− δ(ut))Kt +Xt. (3)

This economy is not distorted, and the welfare theorems allow us to solve the social

planner’s problem in order to find the equilibrium. Under competitive markets, the relative

price of a unit of the investment good using the consumption good as numeraire, Pt, is equal

to the reciprocal of the technology shock, 1/Vt. Define It = PtXt, and hence the aggregate

resource constraint can be written as

Yt = Ct + It = At(utKt)
αH1−α

t .

The static Euler equation using prices is given by Ht =
(

1
ξ
Wt

Ct

)ν
, while the dynamic Euler

equation takes the form 1 = βIEt

[
Pt+1/Ct+1

Pt/Ct

(
(1− δ(ut+1)) + ut+1Rt+1

)]
. The optimal choice

of the utilization rate is given by δ′(ut) = Rt. In turn, the equilibrium wage equals the

marginal product of labor Wt = (1 − α)At(utKt)
αH−αt , while the rate of return satisfies

RtPt = αAt(utKt)
α−1H1−α

t .

At this point, our model has two exogenous disturbances, namely, a neutral and an

investment-specific technology process. To examine the effect of technology fluctuations on

hours worked, we assume that

(lnAt − lnA0 − γat) = ρa,1(lnAt−1 − lnA0 − γa(t− 1)) (4)

+ρa,2(lnAt−2 − lnA0 − γa(t− 2)) + σaεa,t

(lnVt − lnV0 − γvt) = ρv,1(lnVt−1 − lnV0 − γv(t− 1)) (5)

+ρv,2(lnVt−2 − lnV0 − γv(t− 2)) + σvεv,t.
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Thus, the log technologies fluctuate around linear deterministic trend paths, given by lnA0+

γat and lnV0+γvt, respectively. If the autoregressive coefficients sum to one, the fluctuations

are non-stationary and the technology processes can be rewritten as AR(1) processes in terms

of growth rates. The most widely used specifications for the neutral technology process can

be easily obtained as special cases of (4). If 0 ≤ ρa,1 < 1 and ρa,2 = 0, then technology

follows a stationary AR(1) process. If ρa,1 + ρa,2 = 1, then technology has a unit root and

the serial correlation of its growth rates is −ρa,2, which is often assumed to be zero. In order

to restrict the autoregressive processes in (4) and (5) to trend stationarity, it is convenient

to reparameterize them in terms of partial autocorrelations ψ1 and ψ2. Omitting the a and

v subscripts, we let

ρ1 = ψ1(1− ψ2), ρ2 = ψ2. (6)

In case of a unit root, ψ1 = 1. The analysis in this paper is conducted under the assumption

that the two innovations εa,t and εv,t are normally distributed with zero mean and unit

variance. Moreover, we assume that they are uncorrelated at all leads and lags.3

Regardless of whether the technology shocks have a stochastic trend component (unit

root) or are trend stationary, the following transformations generate stationary variables:

Yt
Qt

,
Ct
Qt

,
It
Qt

,
Xt

QtVt
,

Kt+1

QtVt
,

Wt

Qt

, where Qt = A
1

1−α
t V

α
1−α
t .

To approximate the model dynamics, we rewrite the equilibrium conditions in terms of

these detrended variables, derive a non-stochastic steady state, log-linearize the equilibrium

conditions around the steady state, and use a standard procedure to solve the resulting linear

rational expectations system. For this extremely simple economy, a log-linear approximation

is typically used in the literature because it is deemed to be accurate enough.

Let R∗ denote the steady-state rental rate of capital. We use a depreciation function

of the form δ(ut) = δ0 + δ1(u
1+1/ζ
t − 1) and assume that δ1 = R∗/(1 + 1/ζ) such that the

steady state utilization rate equals u∗ = 1. The parameters of the model economy belong

to three categories. First, the parameters that affect the steady state of the model are

the capital share of output α, the discount rate β, the steady-state depreciation rate δ0,

3In principle, one could model lnAt and lnVt as vector autoregressive processes. However, empirically
it turns out that the cross-correlations are small. Since the extension to a VAR process seems neither
quantitatively important nor essential to the methodological issues discussed in this paper, we decided to
impose that the two technology shocks are uncorrelated.
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and the relative weight of consumption and leisure in the utility function ξ. Second, the

parameters lnA0, ψa,1, ψa,2, σa, lnV0, ψv,1, ψv,2, and σv only affect the law of motion of the

technology disturbances. The third category consists of parameters that only affect non-

steady-state behavior, namely, the Frisch labor supply elasticity ν and the elasticity ζ of

capital utilization with respect to interest rates. If ζ = 0, then our model reduces to one

with fixed capital utilization, the case we discuss in Sections 3 and 4. The extension to

variable capital utilization, ζ > 0, is subsequently provided in Section 5.

3. Calibration

This section summarizes the identifying information that is used in a typical calibration of

a stochastic growth model. We start by discussing the steady-state related parameters (Sec-

tion 3.1), and then we examine the identification of the exogenous shocks (Section 3.2) and

the choices of the most relevant endogenous propagation (Section 3.3). As mentioned above,

capital utilization is initially restricted to be constant, leaving the labor supply elasticity ν

as the only parameter that affects the endogenous propagation but not the steady state of

the model. Once we have determined values for all model parameters, we simulate output

and hours worked data from the log-linearized model economy. We then compute variance

ratios for HP-filtered (with the smoothing parameter set to 1600) simulated and actual data.

Unless otherwise noted, our analysis is based on data from 1955:Q3 to 2006:Q4. Our findings

are reported in Section 3.4. Precise data definitions are provided in the Online Appendix.

3.1. Steady-State-Related Parameters

Long-run averages of macroeconomic time series can and typically have been used in cali-

bration studies to identify steady-state-related parameters. According to our specification,

factor markets are competitive, and the aggregate production function has a Cobb-Douglas

form. Hence, the implied labor share WtHt/Yt is equal to 1 − α. While the observed labor

share is time-varying (see, for instance, Ŕıos-Rull and Santaeulàlia-Llopis (2010)), it displays

no clear trend. Hence, we target the steady state of the model to have the average labor

share in the data, which we take to be 0.66. We also target an investment-to-output ratio of

28% and a yearly interest rate of 4%. These choices yield values of α = 0.34, β = 0.99, and
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δ0 = 0.013 in quarterly terms.4 The value of the parameter ξ determines the steady-state

level of hours worked and leisure. It could be set to match either the average level of hours

worked per person in U.S. data or the fraction of total available time within a period devoted

to hours worked. Parameter values could be obtained either from aggregate data on hours

worked or from micro-level data from a time-use survey. In our specification, ξ does not

affect the decision rules in a log-linear approximation and is irrelevant for the behavior of

the model.

3.2. Parameters of the Shock Processes

The identification of the parameters associated with the law of motion of the exogenous shock

processes is best understood in two steps. The first step is the construction of an empirical

measure of the exogenous disturbances. It turns out that in the version of the DSGE model

with fixed capital utilization, the construction of such measures only involves the (previously

identified) steady-state-related parameters, but not the endogenous propagation parameters.

The second step consists of determining the parameters of the shock processes based on the

measured structural disturbances.

Measures of the Shock Processes. In the model economy, the investment-specific technology

shock is equivalent to the (reciprocal of the) relative price of investment in terms of con-

sumption. We construct this relative price by combining a price index for quality-adjusted

equipment investment with a price index for investment in structures. With regard to the

equipment investment price index, Gordon (1990), Greenwood et al. (1997), and Cummins

and Violante (2002) reveal substantial evidence of biases in the trend of official price in-

dexes due to the lack of quality adjustment. We build on the annual series of Cummins and

Violante (2002) to construct our quarterly series of quality-adjusted equipment investment.

Quarterly movements are imputed based on the official index reported by the Bureau of

Economic Analysis (BEA) in the Fixed Asset Tables (FAT-BEA). As a price index for in-

vestment in structures we use the consumption deflator, PC
t . The two indices are combined

with a Tornquist aggregator to obtain a quality-adjusted price index for total investment,

4The definition of labor share has many subtleties that we avoid here altogether; see the aforementioned
Ŕıos-Rull and Santaeulàlia-Llopis (2010) or Cooley and Prescott (1995). The three parameter values also
determined the capital-to-output ratio, which is sometimes used for calibration instead of the investment-
to-output ratio. For our model specification, capital measured in consumption terms is 2.54 times yearly
output.
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P I
t . We then define Pt = P I

t /P
C
t and Vt = 1/Pt, normalizing the index such that P0 = 1 in

1947.

The series for the neutral technology process At is computed using measures of per

capita real output Yt, capital Kt, labor input Ht, and an estimate of the capital share α.5

What is non-standard in our analysis is that we have to construct a quality-adjusted capital

stock.6 To do so, we begin by generating a quarterly series for investment in efficiency

units Xt = (IEt + ISt )/P I
t , where IEt and ISt are total nominal investment in equipment

and structures, respectively, and P I
t is the quality-adjusted price index mentioned above.

The quality-adjusted capital stock is obtained by the perpetual inventory method with the

average physical depreciation rate of total capital calculated by Cummins and Violante

(2002). The initial capital stock K0 is calibrated using the observed level of output and the

investment-to-output ratio in 1947.

Parameterizing the Shock Processes. Based on the empirical measures of lnAt and lnVt, it is

straightforward to determine the coefficients for the autoregressive models (4) and (5). While

typically simple least squares are used to estimate the coefficients of the AR(2) processes,

for internal consistency within this paper, we employ Bayesian techniques. This makes

the estimates directly comparable to those reported for the full DSGE model in Section 4.

Bayesian estimates are obtained by combining a prior density p(θ) for the parameters of an

econometric model, denoted by θ ∈ Θ, with the density of the data given the parameters

p(Y |θ) and applying Bayes Theorem to derive the posterior density p(θ|Y ).

As discussed in Section 2, the AR(2) shock processes are parameterized in terms of partial

autocorrelations ψ1 and ψ2; see (6). These processes are trend stationary if −1 < ψ1, ψ2 < 1

and become difference stationary if ψ1 = 1. We estimate the parameters subject to 0 ≤ ψ1 <

1 (deterministic trend) and ψ1 = 1 (stochastic trend). In the former case, we assume that

the first-order partial autocorrelation has a Beta distribution with mean 0.95 and standard

deviation of 0.02. For both the difference-stationary and trend-stationary specification, it

is assumed that the second-order partial autocorrelation is uniformly distributed on the

interval (−1, 1). Our priors are fairly agnostic with respect to the average growth rate of

5See the Online Appendix for details.
6Note that At is not what is typically referred to as the Solow residual, where the same formula is used

with a series of capital published by NIPA and the investment-specific technical change is largely not taken
into account.
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the technology processes and the location parameters lnA0 and lnV0, which determine the

log levels of the technology disturbances. The priors for the innovation standard deviations

are centered at 1% with a large variance. A summary is provided in the first five columns

of Table 1.

We construct a joint likelihood function for the two technology processes based on a

sample that ranges from 1955:Q3 to 2006:Q4, conditioning on observations from 1954:Q3 to

1955:Q2. Posterior means and 90% probability intervals are reported in the last four columns

of Table 1. Both technology processes are highly persistent and the estimates of ψ1 exceed

0.97. The growth rates of the neutral technology process are essentially uncorrelated, that

is, ψ̂2,a is near zero, whereas the growth rates of lnVt are strongly serially correlated with

ψ̂2,v ≈ 0.8. It is interesting to note that the deterministic component of technology growth

is solely due to lnVt, which implies that it is embodied in the physical capital stock.

3.3. Endogenous Propagation Parameters: The Labor Supply Elasticity

In order to identify the endogenous propagation parameters, a typical calibration does not

use evidence from time series movements of endogenous variables that are centrally related

to the question that is addressed. In the context of our application, which aims at measuring

the fraction of cyclical variation in output and hours that is due to technology shocks, this

would imply not to use the aggregate dynamics of output and hours as a source of information

about the labor supply elasticity. We will in turn discuss a variety of alternative approaches

that have been pursued in the literature to parameterize ν.

Direct Estimates of the Labor Supply Elasticity. There is a large literature that directly

provides estimates of the Frisch elasticity based on the analysis of micro-level data.7 These

estimates are typically very small. In his survey paper, Pencavel (1986) reports that most

estimates for men are between 0 and 0.45, with 0.2 being a typical point estimate.8 The labor

supply elasticity is typically measured based on information about the intensive margin of

prime age white males, who are full-time workers in most periods. However, it is well

documented that a large fraction of hours fluctuations is accounted for by movements in

and out of employment (see, for instance, Kydland and Prescott (1991), who describe the

7MaCurdy (1981), Altonji (1986), and Browning et al. (1985), to name a few classic papers.
8For a more recent survey, see Keane (2010).
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extensive margin as responsible for two-thirds of the variation), and that those that have

the most hours variation along the cycle are not prime age males (see Kydland (1984),

Ŕıos-Rull (1993), and Kydland and Prescott (1988)). In addition, Low (2005) and Domeij

and Floden (2006) argue that, due to borrowing constraints, the estimates may be biased

downward (the latter by up to 50%). Imai and Keane (2004) estimate the elasticity explicitly

accounting for human capital accumulation and obtain a value as high as 3.82. With human

capital accumulation of the learning-by-doing variety, the macro models would need to be

adjusted as in Chang et al. (2002). More recently, Heathcote et al. (2007) estimate a value

for the household elasticity of 0.72 using a definition of the household that includes both

a husband and a wife, while Heathcote et al. (2008) obtain 0.38 when taking into account

household heterogeneity and measurement error but without using the notion of a multi-

person household.

Information on the Composition of Hours Fluctuations. Most of the variation in hours over

the business cycle occurs along the extensive margin (number of workers rather than hours

per worker). To account for such variation, Rogerson (1988) developed a model where agents

care about leisure but face a non-convexity in the opportunities to work. These agents can

use a lottery arrangement to maximize the utility ex ante. Ex post some will work and

others will not. After aggregation, this arrangement yields quasi-linear preferences for a

representative consumer, which corresponds to ν = ∞ in our model. Hansen (1985) used

these lottery arrangements as the source of his calibration strategy in a seminal paper and

not surprisingly found that hours move a lot in response to productivity shocks. Chang

and Kim (2006) in multi-person households and Rogerson and Wallenius (2010) explicitly

considering retirement have recently revisited the role played by non-convexities without

using lotteries. Both papers argue that the macro elasticity, the elasticity that applies to

an aggregate model with a stand-in household, is much larger than the elasticity that arises

from studies using micro data, and advocate a value for the aggregate Frisch elasticity of

around 1.

Turning the Labor Supply Elasticity into a Steady-State-Related Parameter. Functional-form

restrictions on the representative household’s preferences have been used to identify the

labor supply elasticity based on long-run growth patterns. A reasonable description of the

last 100 years of Western experience is the statement that while there has been a massive

increase of wages, by an order of magnitude if not more, interest rates and the allocation
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of hours per capita have not displayed any such long-run trend. Most preference structures

are not consistent with this pattern. Business cycles research typically uses utility functions

that are consistent with this long-term behavior. The most popular among them are Cobb-

Douglas utilities, (cγ`1−γ)1−σ/(1−σ), where ` = 1−H is leisure and the endowment of time is

normalized to one.9 For this utility function, the Frisch elasticity depends only on the steady-

state allocation of hours worked, H∗, via the expression ν = (1 − H∗)/H∗. Another type

of preference structure used in the literature that is consistent with a balanced growth path

and where the steady-state level of hours also determines the Frisch elasticity of substitution

is posed by King et al. (1988). The balanced growth path requirement by itself does not

restrict the value of the Frisch elasticity, which in fact can be anything, provided that one

chooses a per-period utility function that is rich enough.10 However, the choice of utility

function based on sufficient conditions for a balanced growth path ends up implying a value

for the Frisch elasticity based on steady-state considerations that have really nothing to do

with the willingness of households to substitute hours worked across time. If the average

hours worked per adult per week is set to one-third,11 which is a standard choice, the implied

elasticity is 2. A choice of 25 hours per week that weighs young people and retirees more

heavily yields an elasticity of 3. These values are much larger than those arising from the

study of actual households.

Summary. We have considered various methods of identifying the aggregate labor supply

elasticity ν. It turned out that these methods yielded a large range of values, which is at

least in part due to the fact that the DSGE model is quite stylized. However, even more

complicated DSGE models that have been studied in the literature are unable to recon-

cile the evidence from the various sources of information considered above. Since there is

disagreement among researchers with respect to the reliability of the various identification

approaches, we will compute variance ratios for five different choices. ν = 0.2 represents

micro-level estimates based on labor adjustments of males along the intensive margin, while

ν = 0.72 is a micro-level estimate that takes to heart some of the criticisms of macroe-

9This was essentially the choice of Kydland and Prescott (1982).

10Consider, for example the preferences given by C1−σ [1+(σ−1)ξH1+ 1
ν ]σ−1

1−σ . Here the Frisch elasticity is ν
and there is a balanced growth path. See Shimer (2009) and Trabandt and Uhlig (2009).

11The U.S. Bureau of Labor Statistics reports (http://www.bls.gov/opub/working/page17b.htm) 67 hours
per week worked by a married couple between the ages of 25 and 54. Conventionally, we think of 100 hours
per week per person as the available discretionary time.
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conomists about what is the object of interest when measuring the aggregate labor supply

elasticity. We consider ν = 1 as an attempt to capture the macro elasticities that arise

from non-convexities (but not lotteries) argued by Chang and Kim (2006) and Rogerson and

Wallenius (2010). Finally, we look at the high value of ν = 2 found as the value arising from

a sufficient condition to get a balanced growth path.

3.4. Relative Importance of Technology Shocks

We are now in a position to examine the answers obtained from the different calibration

strategies. We simulate the linearized DSGE model for 310 periods using only the neutral

technology process (A), only the investment-specific technology process (V), and both tech-

nology disturbances (A+V). We discard the first 100 observations and calculate the variances

of HP-filtered output and hours based on the remaining 210 observations. These variances

are then divided by the variances of HP-filtered postwar U.S. aggregate output and hours

worked. The simulation steps are repeated 1,000 times, and the entries in Table 2 correspond

to the means and standard deviations of the variance ratios across the 1,000 simulations.

As is well known, e.g., King and Rebelo (1999), the variance ratios for hours worked

are very sensitive to the choice of labor supply elasticity. Our values range from 0.01 to

0.32 for the two technology shocks combined. If we take the Frisch elasticities estimated by

Heathcote et al. (2007) (ν = 0.72) using households’ total hours variation, the variance ratio

is 0.09. An elasticity based on males’ responses along the intensive margin (ν = 0.2) yields

essentially no contribution of productivity shocks to movements in hours. The elasticity

based on the Cobb-Douglas utility function and one-third of the time allocated to work

(ν = 2) yields a variance ratio of 0.32.12 A labor supply elasticity of ν = 1 that is consistent

with aggregate fluctuations generated by a heterogeneous agent economy with indivisible

labor supply results in a variance ratio for hours of 0.14. Interestingly, the investment-

specific technical change is the main culprit of hours variation with over 60% of the total

variation in all model economies.

The variance ratios for output are also increasing in ν and range from 20% to 37%.

Output variation is directly affected by the neutral technology shock and indirectly through

12A similar value was obtained by Kydland and Prescott (1991). They reported a ratio of standard
deviations of about two-thirds, which corresponds to approximately 0.44 in terms of variances.



This Version: January 25, 2011 15

the fluctuation of hours and capital over the business cycle. We find that output variation

is mostly driven by the neutral technology process.13 Finally, the results are somewhat

sensitive to the parameterization of the shock processes. The contribution of technology

shocks is larger for the deterministic trend than for the unit root specification.

4. Bayesian Estimation of the DSGE Model

We now turn to formal econometric methods to determine the importance of productivity

shocks for movements in hours. We use Bayesian estimation techniques, reviewed in An and

Schorfheide (2007), partly as a result of personal tastes and expertise and partly because

they reflect state-of-the-art econometrics and are by now widely used in practice. In Sec-

tion 4.1 we describe the data set used for the benchmark estimation of the DSGE model

and discuss how the probabilistic structure of the DSGE model is completed to make it

amenable to estimation. Priors and posteriors for the DSGE model parameters and the

relative importance of technology shocks are presented in Section 4.2. Section 4.3 contains

a detailed analysis of how the labor supply elasticity is identified through the likelihood

function. Finally, Section 4.4 focuses on the second and third contributions of this paper:

we examine how the estimation of the labor supply elasticity is affected by auxiliary assump-

tions about non-technology shocks and use Bayesian model averaging to weight competing

model specifications. Moreover, we also discuss the sensitivity of the inference to the choice

of observables.

4.1. Benchmark Data Choice and Model Completion

A crucial step in the estimation is the choice of observables Y that enter the likelihood

function p(Y |θ). Here, θ stacks the DSGE model parameters that appeared in Section 2.

Since the goal is to determine the contribution of productivity shocks to the variation of hours

and output, these series should be ingredients for our estimation. Following the tradition

in econometrics, we use labor productivity instead of total factor productivity, because the

construction of the latter would require the knowledge of parameters that we are trying to

13One should not compare the contribution of the neutral shock with the total factor productivity (TFP)
shock in most of the literature because they are computed very differently. In fact, the procedure that we
followed in this paper reduces the role of the neutral technology shock because we increase the size of the
stock of capital.
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estimate. Fortunately, according to our theory the investment-specific technology shock is

under perfect competition exactly the relative price of consumption versus investment. This

gives us the three main series to use in the estimation: the log levels of labor productivity

Y/H, hours worked H, and relative price of investment goods P .

With three series and two shocks, there exists a linear combination of the three series

that can be predicted without error conditional on past observations. To overcome the

singularity, we add an additional structural shock that is able to contribute to the business

cycle fluctuations of hours and output. Given the findings of, among many others, Hall

(1997) and Chari et al. (2007), a natural additional shock is a preference shock that affects

the choice of hours worked. Consider the following variation of the utility function:

Ut = lnCt −Btξ
H

1+1/ν
t

1 + 1/ν
, (7)

where lnBt = ρb lnBt−1 − (σb/ν)εb,t is such a preference shock. This will be our benchmark

specification.

4.2. From Priors to Posteriors

Priors. The joint prior distribution for the DSGE model parameters is constructed as a

product of marginal distributions, which are summarized in Table 3. It is useful to distinguish

the same three groups of parameters as we dud previously in the calibration analysis. The

prior elicitation for the steady-state related parameters α, β, and δ0 uses the same sources of

information as in Section 3.1. This elicitation is based on long-run averages of observables

that are not included in the likelihood function, such as real interest rates, the labor share,

and the size of the capital stock.14 We use degenerate priors for two of the parameters: the

discount factor and the depreciation rate are fixed at β = 0.99 and δ0 = 0.013. Based on the

labor share data, we choose a prior for α that is centered at 0.34 with a standard deviation

of 0.02.

The remaining steady-state related parameters are lnA0, lnV0, ξ, as well as the tech-

nology growth rates γa and γv. In order to simplify the prior elicitation, we use a re-

parameterization that replaces lnA0 by lnY0 and ξ by lnH∗. As in the estimation of the

technology shock parameters based on the measured processes in Section 3.2, the priors for

14Del Negro and Schorfheide (2008) show how to automate this kind of prior elicitation.
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these parameters are fairly diffuse. The prior distributions for the partial autocorrelations

and the innovation standard deviations of the two technology processes are identical to those

reported in Table 1. The prior distribution for the autocorrelation of the preference shock

is centered at 0.95 and has a standard deviation of 0.02. Finally, a prior for the endogenous

propagation parameter, that is, the Frisch labor supply elasticity, needs to be specified. Our

prior for the Frisch labor supply elasticity is centered at the balanced growth path value

of ν = 2, but with a standard deviation of one. Hence, a 90% a priori credible interval

encompasses values found in studies that use micro-level data for employed males, as well as

the values necessary to be able to explain most of the observed volatility in hours worked in

a stochastic growth model driven by technology shocks.

Posteriors. The DSGE model is estimated based on observations from 1955:Q3 to 2006:Q4,

conditioning on observations from 1954:Q3 to 1955:Q2. This conditioning will allow a sub-

sequent comparison of marginal likelihoods between the DSGE model and a VAR. We use

the Markov-Chain Monte Carlo methods reviewed in An and Schorfheide (2007) to obtain

draws from the posterior distribution of the DSGE model parameters. The estimates of the

technology shock parameters are very similar to those reported in Table 1. In part due to the

fairly tight prior on α, the posterior mean estimates fall in the range of 0.33 to 0.40. Thus,

the specific statistical methods used here did not change the estimates of these parameters.

The coefficient estimates for the preference and government spending shocks are such that

the model is able to capture the variation in output and hours worked that is not explained

by the two technology shocks. Finally, we obtain an estimate of the Frisch elasticity of 0.85,

which is a credible interval that ranges from 0.34 to 1.33. This estimate is in the range of

those recently obtained by Heathcote et al. (2007, 2008) using micro-level data. A table with

detailed estimation results is available in the Online Appendix.

Relative Importance of Technology Shocks. The neutral and investment-specific technology

shocks combined account for about 11% of the variation in hours worked and 26% of the

variation in output. Given the estimated labor supply elasticity of 0.85, the estimates of

the relative importance of technology shocks for output and hours fluctuations are similar

to those obtained from the calibration with ν = 0.72.



This Version: January 25, 2011 18

4.3. Identification of the Labor Supply Elasticity

The likelihood function, at the heart of econometrics, peaks near parameter values for which

the model-implied autocovariance function of the observables matches the sample autoco-

variance function as closely as possible in terms of a statistical metric. It does so by forcing

each shock in the model to contribute particular autocovariance features, which in total

have to mimic the sample autocovariances. This matching is, unfortunately, often difficult

to interpret because there is no transparent link from patterns in the data to particular pa-

rameter estimates. The goal of this section is to shed some light on why our likelihood-based

estimation yields a fairly low estimate of the labor supply elasticity.

Broadly speaking, technology shocks for which we can construct observations indepen-

dently of the labor supply elasticity play the same role as exogenous demand shifters (or

instrumental variables) in the analysis of traditional simultaneous equations systems: they

perturb the market equilibrium and move prices and quantities. However, in DSGE mod-

els these technology shocks tend to shift both supply and demand. Since the slope of the

labor demand function is essentially identified from the average labor share through func-

tional form assumptions, observing the movements of wages and hours in response to the

perturbation is sufficient for the determination of the labor supply elasticity.

In the remainder of this subsection, we first show that the labor supply elasticity is

identifiable from the dynamic response of hours and wages, which in our model equal labor

productivity, either to a neutral or an investment-specific technology shock. Second, we

estimate a structural VAR identified with minimal restrictions on actual data as well as

two simulated data sets. The simulated data sets are generated from the DSGE model

parameterized with a small and a large value of ν. An impulse response comparison sheds

light on whether the data favor a low or high labor supply elasticity. To ease the exposition,

we assume that the technology shocks follow unit root processes by restricting ψ1,a = ψ1,v =

1.

Along the response to a technology shock, the labor supply condition, written in terms

of temporal differences ∆, has to be satisfied:

∆ĥt = ν(∆ŵt −∆ĉt). (8)
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Here, ĥt denotes hours in percentage deviations from its steady state, and ŵt and ĉt denote

percentage deviations of detrended real wages and consumption from their respective steady

states. Since consumption is not included in the list of observables used in our likelihood-

based estimation, we will replace it by a function of wages, hours, and technology shock.

We show in the Online Appendix that in response to a one standard deviation investment-

specific technology shock in period t = 1, the wage and hours dynamics for t > 1 can be

expressed as

∆ĥt = ν

[
∆ŵt + r∗(1− α−1)ŵt − (−ψ2,v)

t−1 σv
1− α

]
, (9)

where r∗ = R∗/(R∗ + 1 − δ0), and R∗ = e(γa+γv)/(1−α)/β − (1 − δ0). A similar expression

can also be obtained for the response to a neutral technology shock. Recall that r∗ and

α are identifiable from long-run averages of the labor share, real interest rates, and the

investment-capital ratio, which enter our estimation objective function implicitly through

the prior distribution. Thus, information on the impulse responses of wages (which are

equal to average labor productivity in our Cobb-Douglas environment with constant factor

shares) and hours worked suffices to identify the labor supply elasticity.

The DSGE model implies that data on the relative price of investment provide a direct

observation on the investment-specific technology shock. Moreover, the assumption that this

technology shock is exogenous generates an exclusion restriction that is sufficient to identify

the dynamic responses of labor market variables to innovations in εv,t. Thus, we deduce that

the likelihood function contains identifying information on the labor supply elasticity.

In order to decode the identifying information, the following experiment is conducted.

Using actual data and data simulated from the DSGE model, a structural VAR(4) in labor

productivity growth, hours worked, and investment-specific technology growth is estimated.

The innovations of the structural VAR are interpreted as innovations in the neutral tech-

nology shock, the investment-specific technology shock, and a non-technology shock. The

structural VAR is identified by the following three restrictions that are also hardwired in the

DSGE model. The first two restrictions are generated by the assumption that the investment-

specific technology growth (reductions in the relative price of investment) is exogenous and

follows an AR(1) process. Thus, the other two shocks have no effect on investment-specific

technology. The third restriction is that the non-technology shock does not shift the labor

demand schedule upon impact because capital is fixed in the short run.
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The resulting VAR-based impulse responses are depicted in Figure 1. The figure shows

90% credible bands for responses estimated based on U.S. data as well as posterior mean

responses based on data that have been generated from a DSGE model with Frisch elasticities

ν = 0.2 (solid) and ν = 2 (dashed).15 The hours responses provide conflicting information

about the labor supply elasticity. To match the responses to an investment shock and the

non-technology shock, the labor supply elasticity should be small; that is, a value of 0.2 is

preferred over a value of 2. To reproduce the empirical response to a neutral technology

shock, on the other hand, a large Frisch elasticity is needed. The overall estimate of ν

is ultimately determined by the implicit weighting of the discrepancy between sample and

DSGE model implied autocovariance functions (and hence VAR-based impulse response

function estimates) encoded in the likelihood function. It turned out to be low, which

suggests that the B- and V-shock responses received relatively more weight than the A-

shock response.

4.4. Sensitivity of Estimation to Auxiliary Assumptions

The Bayesian estimation required us to make an auxiliary assumption about the business

cycle fluctuations that are not caused by technology shocks. Moreover, we had to select a

specific set of observables to construct the likelihood function. Since the identifying infor-

mation in the likelihood function depends on both the data Y as well as the probabilistic

structure of the exogenous shocks that ultimately generate the distribution of the data, we

will now consider the robustness of our estimation to changes in the exogenous shocks as

well as the set of observables.

Alternative Shock Specifications. Instead of a preference shock, one can introduce a demand

shock, such as a government spending shock, which changes the aggregate resource constraint

to Yt = Ct + It + Gt. We assume that government expenditures are financed by lump-sum

taxes and are determined as a time-varying fraction of total output, Gt = (1 − 1/gt)Yt.

The process for government expenditures is exogenous and evolves according to ln(gt/g
∗) =

ρg ln(gt−1/g
∗) + σgεg,t.

16 Second, we consider a version of our model in which the preference

15The remaining parameters used to simulate the DSGE model are obtained by reestimating the DSGE
model subject to the restrictions that ν = 0.2 (ν = 2) and ψ1,a = ψ1,v = 1.

16This specification leads to the relationship lnYt = ln(Ct + It) + ln gt and implies that the government
share of output is stationary.



This Version: January 25, 2011 21

shock and the government expenditure shock are simultaneously active. Thus, we denote

the two additional model specifications by {A, V,G} and {A, V,B,G} and the benchmark

specification of the previous subsection by {A, V,B}.17 In order to estimate the model

specifications with the government spending shock, we set g∗ = 1.2 based on the average

post-war government spending to GDP ratio. The prior distribution for ρg is centered at

0.95 and has a standard deviation of 0.02. Finally, we consider model specifications with

difference stationary technology shocks, that is, ψ1,a = ψ2,a = 1. The location parameters of

the Inverse Gamma priors for σb and σg (see Table 3), are chosen such that the priors for

the various model specifications have similar implications with respect to the importance of

non-technology shocks for the business cycle fluctuations of output and hours as well as for

the volatility of output growth and hours. In particular, our priors imply that the 90% a

priori credible intervals for the combined effect of the non-technology shock range from 0 to

25% for output and 10 to 100% for hours.

Alternative Data Sets. Since the accumulation of the quality-adjusted investment series pro-

vides a measure of the capital stock, which in combination with aggregate output and hours

worked identifies the neutral technology shock via the production function (see Section 3.2),

we consider the quality-adjusted investment, lnXt, as a fourth observable. In addition to the

benchmark sample {Y/H,H, P}, we estimate the stochastic growth models on the samples

{Y/H,H,X} and {Y/H,H, P,X}, with the qualification that only the four-shock model is

estimated based on the four-variable sample.18

Quantitative Results. Table 4 reports posterior means and 90% posterior credible intervals

for the labor supply elasticity based on the various combinations of estimated model spec-

ifications and data sets. If the observables consist of productivity, hours worked, and the

relative price of investment, the posterior mean estimates range from 0.30 to 0.85 and are

somewhat larger if the unit root restrictions are not imposed. If the price of investment is

replaced by the quantity, the estimates of ν tend to increase, in particular if the government

spending shock is included as a shock in the model. This finding is at least qualitatively

17Modern variations on this model, containing additional frictions such as sticky prices and wages (and
choices of households outside their labor supply function), monopolistic competition, monetary distortions,
and the like, allow for many more shocks. See, for example, Smets and Wouters (2007).

18Guerron-Quintana (2010) examines how data choice affects parameter identifiability in the Smets-
Wouters model by eliminating subsets of the seven macroeconomic time series that are typically used to
estimate the Smets-Wouters model.
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consistent with the impulse responses in Figure 1. The {Y/H,H, P} data set contains direct

information on the investment-specific technology shock. The figure indicates that the re-

sponses to an innovation of the investment-specific technology shock are better matched by

a low labor supply elasticity. The {Y/H,H,X} data set, on the other hand, in conjunction

with the model-implied capital accumulation and production function, tends to identify the

neutral technology shock and the responses to its innovation well. According to Figure 1,

these responses are better matched with a high value of the labor supply elasticity. Un-

fortunately, we do not have a good explanation as to why the change in the labor supply

elasticity estimate is most pronounced for the {A, V,G} model. Finally, if the four-shock

model specification is estimated based on four series, the labor supply elasticity estimates

drop to 0.17 (unit root restrictions not imposed) and 0.12 (unit root restrictions imposed).

So far, the econometric analysis has generated multiple sets of parameter estimates, which

in turn lead to a multitude of answers for our quantitative question. For each model specifi-

cation and data set combination, Table 5 reports posterior means and standard deviations of

variance ratios computed from HP-filtered simulated and actual data. All entries refer to the

combined effect of neutral and investment-specific technology shocks on output and hours

worked. The variance ratio results mimic the labor supply elasticity estimates: high elastici-

ties yield large effects. The largest effect of technology shocks on hours worked fluctuations is

obtained from the {A, V,G} specifications estimated based on {Y/H,H,X} data, explaining

20% of the observed variation when the shocks are restricted to follow unit root processes and

22% otherwise. The corresponding numbers for the output fluctuations are 32% and 33%,

respectively. If, on the other hand, the DSGE model is estimated based on {Y/H,H, P,X}
observations, the labor supply elasticity is around 0.1, which translates into variance ratios

of 1% for hours and 22% for output. Thus, the range of answers generated by estimating the

DSGE model is about as wide as the range of results obtained by the various calibrations

considered in Section 3.4. We deduce that within each empirical methodology, differences

among the explicit or implicit identification of key parameters can generate a wide spectrum

of quantitative results, making a convincing case that quantitative macroeconomists from

both the calibration as well as the estimation camp should place more emphasis on searching

for reliable sources of identification of key parameters and making them transparent to their

audiences.

Model Averaging. Not all estimated model specifications track the time series data equally
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well. In a Bayesian econometric framework, it is natural to assign more weight to parameter

estimates and predictions obtained from model specifications that attain a better time series

fit. Formally, one can use log marginal likelihoods to update prior model probabilities.19

For each of the three data sets, Table 6 reports log marginal likelihood differentials (or log

Bayes factors), using the specification with the highest marginal likelihood as a benchmark.

The log Bayes factors are converted into posterior model probabilities under the assumption

that all DSGE model specifications have equal prior probability. For the {Y/H,H, P} data

set, it appears to be slightly preferable to impose unit roots in the two technology processes

and to augment the technology-driven DSGE model with a government expenditure shock

instead of a preference shock. Based on the {Y/H,H,X} observations, the trend-stationary

specifications are preferred in the three-shock models. However, the best fit is obtained by the

four-shock version with unit root technology processes. Overall, the log marginal likelihood

differentials are fairly small, indicating that the data can only imperfectly discriminate among

the various specifications.

The boldfaced entries in Table 5 indicate specifications with posterior model probabil-

ities higher than 3%. Weighted by posterior model probabilities, we conclude from the

{Y/H,H,X} data that 5% of hours fluctuations and 25% of output fluctuations can be

explained by technology shocks. The corresponding numbers for the {Y/H,H, P} data set

are 2% and 21%, respectively. Due to the small value of the estimated labor supply elas-

ticity based on the {Y/H,H, P,X} data set, hours essentially do not move in response to

technology shocks, and they explain 22% of output fluctuations.

5. Variable Capital Utilization

This section extends the previous analysis to the case of variable capital utilization (ζ >

0). From a substantive perspective, variable capital utilization affects the propagation of

structural shocks. The effective capital input is no longer pre-determined upon impact of

the shock because firms can adjust capital along the utilization margin. Since the marginal

19Consider a collection of models Mm, m = 1, . . . ,M . The marginal likelihood is defined as p(Y |Mm) =∫
p(Y |θ,Mm)p(θ|Mm)dθ. The posterior probability of Mm is π(Mm|Y ) = π(Mm)p(Y |Mm)/p(Y ), where

p(Y ) =
∑M
m=1 π(Mm)p(Y |Mm) and π(Mm) is the prior probability of Mm. From a non-Bayesian per-

spective, the marginal likelihood provides a measure of in-sample fit that is adjusted by a penalty for model
complexity.
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product of labor rises as the effective capital input increases, hours tend to respond more

strongly to technology shocks. Variable capital utilization is a mechanism that is present in

many business cycle models to enhance their empirical performance; see the comprehensive

discussions in Greenwood et al. (2000) and Christiano et al. (2005). From a methodological

perspective, the variable utilization model includes an additional endogenous propagation

parameter that needs to be identified. Moreover, it is not possible anymore to determine the

parameters of the neutral technology shock independently of the endogenous propagation

parameters, which is the case in many DSGE models. Section 5.1 reexamines the calibration

analysis, and the variable capital utilization model is estimated in Section 5.2. It remains

the case that within each empirical methodology, differences among the explicit or implicit

identification of key parameters can generate a wide spectrum of quantitative results. Finally,

Section 5.3 provides some discussion of results obtained from various other variants of the

stochastic growth model that have been considered in the literature.

5.1. Calibration

Neither the calibration of the steady-state-related parameters, nor the calibration of the

parameters associated with the investment-specific technology shock and the labor supply

elasticity, is affected by the variable capital utilization. We only have to reconsider the

calibration of the neutral technology shock parameters as well as the choice of the elasticity

of capital utilization with respect to interest rates, ζ. We consider several of the strategies

to calibrate ζ that have been proposed in the literature and use an indirect-inference step to

determine the technology shock parameters.

Neutral Technology Shock Parameters. In the case of constant capital utilization, we con-

structed a sequence for capital, and in turn the neutral technology shock, based on investment

data by iterating the capital accumulation equation (3) forward with δ(ut) = .013. In the

case of variable capital utilization, the capital depreciation rate is time-varying and the use

of the perpetual inventory method requires a utilization series as well as knowledge of the

function δ(ut). Since capital utilization is difficult to measure without error, we proceed

with an indirect inference approach. We will use actual data to construct the same series of

measured total factor productivity (TFP) that we used in Section 3.2. However, for ζ > 0

this measured TFP cannot be equated with the neutral technology shock because it ignores
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the effect of time-varying utilization and, hence, it contains an incorrect measure of capital

that does not account for utilization-dependent depreciation rates.

Suppose a parameter value for ζ has been selected. Let θ(−a) = [α, β, δ0, ν, ζ, ψ1,ν , ψ2,ν , σν ]
′

denote the DSGE model parameter not associated with the neutral technology process and

define θ(a) = [ψ1,a, ψ2,a, σa]
′.20 We proceed by simulating data from the DSGE model for

various choices of θ(a), compute measured TFP from the simulated data, and estimate the

autoregressive coefficients ψm1,a, ψ
m
2,a, and σma for the simulation-based measured TFP series.

We then choose the θ(a) that minimizes a discrepancy measure between the estimated pa-

rameters of measured TFP based on the actual and simulated data. As actual parameter

estimates (target) we use the posterior means reported in Table 1. Throughout this process,

the parameters θ(−a) are held fixed. Further details are provided in the Online Appendix.

Direct Estimates of ζ. Basu and Kimball (1997) provide direct estimates of 1/ζ using ob-

servable proxies for the latent utilization of factor inputs. These proxies are relative factor

prices as well as material and energy inputs, and their relationship to utilization has been

derived from the firms’ cost minimization problem under some assumptions on the form

of the production function. Their benchmark point estimates imply a value of ζ of about

1. However, their confidence intervals, without imposing a non-negativity constraint, range

from about -0.2 to 2 for 1/ζ, which in turn is consistent with large values of ζ. Baxter and

Farr (2001) and Mandelman et al. (2011) set the elasticity to ζ = 1, essentially using Basu

and Kimball (1997)’s point estimate. Christiano et al. (2005) use a direct, albeit potentially

noisy, measure of capital utilization as one of the observables in a structural VAR that is used

to generate a set of impulse responses, including that of utilization, to a monetary policy

shock. The parameter ζ (among others) is then estimated by matching their model’s im-

pulse responses to the ones obtained from the structural VAR. Their estimation procedures

insisted on a huge value of the elasticity that attempted to break the feasibility of solving

the model. As a compromise, they set ζ = 100.

Turning ζ into a Steady-State-Related Parameter. Greenwood et al. (1988) specify a power

functional form for depreciation with only one parameter as a function of capacity utilization,

20Since we are interested only in the business cycle properties of the model, the parameters that determine
the level of the series, lnA0 and lnV0, and the growth rate parameters γa and γν are omitted.
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and then they set the elasticity to get a steady-state depreciation rate of 10%.21 The implied

value of the elasticity is ζ = 2.38. Similarly, in a model with productivity shocks, endogenous

capital utilization, and labor hoarding, Burnside and Eichenbaum (1996) choose ζ = 1.85

to match a steady-state depreciation target given steady-state capital-output ratio, discount

rate, and output growth targets. It yields a value ζ = 1.85. Greenwood et al. (2000) have

a more complicated model with equipment and structures, and its technological structure is

such that to calibrate it, seven parameters are controlled by seven targets. All these targets

are based on long-run U.S. features that the balanced growth path of the economy is set to

replicate. Their value is ζ = 1.69.

Relative Importance of Technology Shocks. To examine the relevance of the sources of identifi-

cation of ζ, we consider the following set of values: {0, 0.2, 1, 2, 5}. The value of 0 corresponds

to the benchmark case of constant utilization, and the remaining values are chosen to cover

the estimates reviewed above. Our approach resembles that of King and Rebelo (1999),

who recognized how little is known about the utilization elasticity and conducted a large

sensitivity analysis for values of ζ between 0 to 10. The results for a Frisch labor supply

elasticity22 of ν = 0.72 are summarized in Table 7. The top rows of the table document that

the presence of variable capital utilization does not really affect the estimated persistence

of the neutral technology shock, captured by ψ1,a and ψ2,a, for the range of ζ’s considered.

However, the estimate of the innovation standard deviation σa monotonically declines with

ζ. The resulting variation in the contribution of neutral technology shocks to the variance

of hours is not very large, ranging from 2% to 4%, and is non-monotonic in ζ.

The measurement of the investment-specific technology shock is not affected by the vari-

able capital utilization. Since the mechanism of capacity utilization tends to amplify hours

movements, the variance ratio for hours fluctuations caused by the V shock increases from

6% (ζ = 0) to 21% (ζ = 5) depending on the choice of the parameter, a choice made at best

on thin grounds. Thus, as in the benchmark model with constant capital utilization, the

choice of identification scheme for a key parameter yields a lot of variation in the quantitative

finding.

21This is conditional on a discount rate of 0.96.
22For each value of ζ, the analysis of the importance of the identification of the Frisch elasticity of labor

can be easily replicated. Clearly, Section 3.3 already showed the answers for ζ = 0. For instance, for ζ = 1
we obtain that the variance ratio for hours ranges between 0.01 for ν = 0.2 to 0.54 for ν = 2.
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5.2. Bayesian Estimation

In the likelihood-based DSGE model estimation, the utilization elasticity ζ is implicitly

identified from the autocovariances of the observables. Variable capital utilization could

either be treated as a latent variable, meaning that information about ζ is extracted, say,

from the joint dynamics of productivity, hours, and the relative price of investment, or a

measure of utilization could be added to the set of observations. Including a utilization series

as an observable has the advantage that its cross-correlation with the other time series can

provide valuable identifying information for ζ. The disadvantage is that this information is

potentially contaminated by measurement errors. We subsequently document the range of

estimates that can arise from different ways of treating capital utilization.

Latent Variable Approach. When treating utilization as a latent variable, we only need to

include a prior distribution for ζ, which we choose as ζ ∼ G(2, 1). A 90% credible interval

covers all the values considered in the calibration except ζ = 5.

Treating Utilization as Observable. Following the existing literature, two proxies for vari-

able capital utilization are considered: capacity utilization data from industrial production,

henceforth TCU, and a survey of electric power use, denoted by E. The TCU series starts in

1967:Q1, whereas the E series is available from 1972:Q1 to 2005:Q4. Our estimation sample

is adjusted accordingly. TCU is divided by its sample average to ensure that the average

utilization is normalized to one, and then we take the logarithm. E has an upward trend

that reflects an increase in electricity intensity of the production process. Consequently, we

remove a deterministic trend from the log of electrical power use.

To use the utilization data in the estimation, a measurement equation needs to be spec-

ified:

umt = ût + ωt, ωt = ρuωt−1 + σuηt. (10)

Here, umt is the observed utilization and ût is the utilization in the DSGE model in terms

of log deviations from steady state. The AR(1) process ωt captures a measurement error.

We consider the following prior distribution for the parameters of the measurement error

process:

ρu ∼ B(0.5, 0.2), σu ∼ IG(0.01, 4).

At the prior mean, the measurement error variance is less than 1% of the variance of the

observed utilization series.
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Posteriors and the Relative Importance of Technology Shocks. The estimation results are

presented in Table 8. We estimate the {A, V,B} specification of the DSGE model on

the {Y/H,H, P} sample, and the {A, V,B, ω} specification on the {Y/H,H, P, TCU} and

{Y/H,H, P,E} samples. The latter specification includes the capital utilization measure-

ment error process ωt. The estimates of ζ are very sensitive to the identifying information

contained in the three samples and vary considerably. The estimated utilization elasticity is

0.24 if utilization is treated as a latent variable. Since ζ affects the shape of the impulse re-

sponses and the autocovariance functions, it is identifiable in the absence of utilization data.

If utilization data are included into the set of observables, the estimate of ζ increases to 0.75

(E) and 1.70 (TCU), respectively. However, the estimated autocorrelation of the measure-

ment error process is around 0.95, and the estimate of σu is around 0.014. This implies that

more than 90% of the variability in the utilization series is attributed to measurement errors,

suggesting a mismatch between model-implied and observed utilization dynamics.

The estimated first-order partial autocorrelation of the neutral technology process drops

from 0.98 to 0.96 if utilization data are included, and the standard deviation of the inno-

vation drops from .0068 to .0057. Inference with respect to the labor supply elasticity ν is

very similar across samples. The estimates are slightly lower than those obtained from the

{Y/H,H, P} sample reported in Table 4. The discussion in Section 4.3, in particular Equa-

tion (9), implies that under variable capital utilization, the labor supply elasticity remains

identifiable based on the relative response of labor productivity and hours to a technology

shock. The identifying information is contained in the relative response of wages and hours to

technology shocks and thus encoded in the likelihood function even if utilization is excluded

from the set of observables.

The estimated contribution of technology shocks to fluctuations of hours worked and

output is less sensitive to the choice of data set than the estimation of the utilization elasticity.

Overall, the variance ratios remain in the range of 6% to 11% for hours worked and 24% to

28% for output. Unlike in the calibration, identification of the labor supply elasticity and

the utilization elasticity are linked, and the amplification effect of variable capital utilization

is essentially offset by a lower estimate of the labor supply elasticity.
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5.3. Further Generalizations Considered in the Literature

A recent literature uses an expanded version of the neoclassical growth model, includes

various nominal and real frictions as well as several additional shocks, and provides an

answer to the same question that we pursue. Justiniano et al. (2010b) estimate one of these

expanded models with the same Bayesian techniques used in this paper. They assess the

contribution of technology shocks (especially investment-specific shocks) to be up to 60%

of hours variation at business cycle frequencies. The reasons for this discrepancy with our

findings include the fact that in their environment with fixed wages, a fraction of agents is

unable to reoptimize their price and forced to supply whatever number of hours is demanded

at the posted price; thus, even with small Frisch elasticity, hours tend to move a lot in

response to technology shocks. Another source of discrepancy, at least compared with our

estimation with the {Y/H,H, P} and {Y/H,H, P,X} data sets, is the fact that they treat

the investment shock as a latent process, which turns out to be much more volatile than the

relative price of investment. Justiniano et al. (2010a) include the relative price of investment

as an observable but allow for an additional (unobserved) shock to the marginal efficiency

of installed investment. They find that this shock plays a big role in accounting for hours

variation relative to the observed shocks to the relative price of investment. Liu et al. (2009)

impute most of the role in shaping fluctuations (especially when focusing on the Great

Moderation) to the role of neutral technological shocks, capital depreciation shocks, and

wage mark-up shocks, while they argue that investment-specific technology shocks played a

small role.

6. Lessons for Practitioners

While our methodological points were presented in the context of a specific application, there

are several lessons learned for other models and applications.

Identification First, Methods Second. The first step of the analysis should be to consider var-

ious plausible ways of identifying those parameters that are highly influential in shaping the

quantitative findings. The second step is to incorporate these identification schemes into the

quantitative analysis, be it a calibration or an econometric estimation of the DSGE model.

Unfortunately, much of the existing literature has the order reversed: researchers make a

choice as to whether to calibrate or estimate the model, and then rely on the identification
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approaches that are typically associated with these methodologies. We deliberately followed

this reverse order in our presentation to highlight three identification schemes for an aggre-

gate labor supply elasticity that are typically associated with a calibration and to provide

some new insights into the identification schemes that are hardwired into different likeli-

hood functions. However, as a recommendation for practitioners, we suggest disassociating

identification schemes from quantitative methodologies.

Watch out for the 800-Pound Gorilla. In a perfect world, different sources of identifying

information would yield mutually consistent conclusions about key model parameters after

the precision of the information has been properly accounted for. Unfortunately, that is not

the case if one works with fairly stylized and to some extent misspecified models, as we do in

quantitative macroeconomics.23 The reality is that different identification approaches often

yield conflicting quantitative findings. Much of the literature on estimated DSGE models

concentrates on characterizing uncertainty conditional on a particular identification scheme

but loses track of the often more important sensitivity of results to the initial choice of

identification source.

To Calibrate or Estimate? The authors disagree on thie question of whether to calibrate

or estimate. The main difference between calibration and estimation is that the latter as-

signs statistical weights to different sources of information. One example is the optimal

weight matrix for overidentifying moment conditions in a Generalized Methods of Moments

(GMM) setting, which tries to attach Bayesian or frequentist measures of uncertainty to the

quantitative results.

The authors do agree that the various identification sources that we highlighted in the

context of our application and that arise in other applications can be incorporated in ei-

ther a calibration or an estimation approach. For instance, a calibration could use the

impulse response information from Section 4.3 to parameterize the labor supply elasticity.

The identification of the neutral technology shock parameters in Section 5.1 mimics the in-

direct inference approach in econometrics developed by Gourieroux et al. (1993) and Smith

23Table 6 also contains log marginal likelihood differences for a VAR(4) with Minnesota prior. For all three
data sets, the VAR attains a substantially better fit than the DSGE model specifications, which is evidence
for DSGE model misspecification. Some of the theory-implied cross-equation restrictions are at odds with
the data. The same is true for more sophisticated DSGE models as documented in Del Negro et al. (2007).
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(1993). Estimation can use information from micro-level data, impose functional form restric-

tions that turn endogenous propagation parameters into steady-state-related parameters, or

extract information from long-run averages of interest rates, capital-investment ratios, or

consumption-investment ratios. This can be implemented in part by using prior distribution

in a Bayesian framework or through setting up moment conditions in a frequentist GMM or

minimum-distance framework.

Aggregating Results. Econometric approaches, in particular Bayesian approaches, tend to

weight quantitative predictions from different model specifications by the relative fit that

these specifications attain. In our application, we used Bayesian model averaging to combine

results from different DSGE model specifications estimated based on the same data set.

This proved to be a convenient tool but did not allow us to aggregate results obtained from

different data sets. Across data sets, the variation in hours explained by technology shocks

ranges from 1% to 5% and the variation in output from 21% to 25%.

For the calibration analysis, we tabulated our findings conditional on various choices of

the labor supply elasticity, enabling the reader to apply her or his own weighting scheme for

the plausibility of the various identification approaches. Our own weighting scheme takes

the following form: we have some doubts about the two extreme values of the labor supply

elasticity, which are based on middle-aged full-time working white men, the most irrelevant

group from a business cycle point of view or in unnecessary, and probably misguided re-

strictions from balanced growth paths. After all, it is hard to see what insights long-term

trends generate for business cycle issues. The use of micro-based estimates that take into

account both the work of men and women and the intensive and extensive margins as in

Heathcote et al. (2007, 2008) deliver arguably the most plausible estimates of ν and imply

that between 3% and 9% of hours fluctuations are explained by technology shocks. These

estimates happen to be consistent with those from the likelihood-based analysis.

In the environment with capital utilization, the calibration approach for a unit value of

ζ (the elasticity of utilization with respect to the interest rate) and for our favorite labor

elasticity yields an estimate of the variance of hours accounted for by technology shocks of

0.15. The estimation approach yields estimates ranging from 0.06 to 0.11. Only when the

utilization elasticity is set to 5 does the calibration yield very different answers.
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7. Conclusion

The main contribution of our paper is to compare how key model parameters are identified

in a standard calibration versus a likelihood-based estimation. We make the case that quan-

titative macroeconomists will benefit from thinking about particular identification sources

independently of the quantitative approaches that are used to exploit them. In the context

of a specific application, we shed some light on how the likelihood function extracts infor-

mation about important model parameters and thus contribute to the growing econometric

literature on DSGE model identification. Moreover, we carefully examine the sensitivity of

likelihood-based estimates to the inclusion of additional shocks that complete the proba-

bilistic structure of the DSGE model, and we use Bayesian model averaging to aggregate

the quantitative implications of the various model specifications. The analysis conducted in

this paper has convinced us that, regardless of our preferences for quantitative methodolo-

gies, we should place more emphasis on searching for reliable sources of identification of key

parameters and making these sources transparent to our audience.
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Table 1: Priors and Posteriors for Technology Shock Parameters

Prior Distribution Deterministic Trend Stochastic Trend
Name Domain Density Para (1) Para (2) Mean 90 % Intv. Mean 90 % Intv.
γa IR Normal 0.00 0.10 -.001 [-.002, .000] .000 [-.001, .001]
ψ1,a [0, 1) Beta 0.95 0.02 0.97 [0.96, 0.99] 1.00
ψ2,a (−1, 1) Uniform -1.0 1.00 -0.03 [-0.15, 0.09] -0.06 [-0.19, 0.05]
σa IR+ InvGamma 0.01 4.00 .007 [.006, .008] .007 [.006, .008]
γv IR Normal 0.00 0.10 .008 [.007, .008] .007 [.005, .009]
ψ1,v [0, 1) Beta 0.95 0.02 0.99 [0.99, 1.00] 1.00
ψ2,v (−1, 1) Uniform -1.0 1.00 -0.76 [-0.84, -0.69] -0.81 [-0.90, -0.73]
σv IR+ InvGamma 0.01 4.00 .003 [.003, .004] .003 [.003, .004]
lnA0 IR Normal 0.00 100 4.84 [4.74, 4.95] -2.66 [-97.4, 76.5]
lnV0 IR Normal 0.00 100 -0.14 [-0.24, -0.06] -0.85 [-79.9, 86.1]

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,
and Normal distributions; the upper and lower bound of the support for the Uniform distri-
bution; and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.

The last four columns contain posterior means and 90% credible intervals. To estimate the
stochastic trend version of the model, we set ψ1,a = ψ1,v = 1.



T
a
b

le
2
:
C
a
l
ib
r
a
t
io
n

(O
ld

)
M

ic
ro

S
tu

d
ie

s
of

(N
ew

)
M

ic
ro

S
tu

d
ie

s
of

N
on

co
n
ve

x
it

ie
s

B
al

an
ce

d
G

ro
w

th
M

al
es

,
In

te
n
si

ve
M

ar
gi

n
M

al
es

,
In

te
n
si

ve
M

ar
gi

n
H

ou
se

h
ol

d
s,

A
ll

M
ar

gi
n
s

C
ob

b
-D

ou
gl

as
U

ti
li
ty

ν
=

0.
2

ν
=

0.
72

ν
=

1.
0

ν
=

2.
0

D
et

er
m

in
is

ti
c

T
re

n
d

α
=

0.
34

,
β

=
0.

99
,
δ 0

=
0.

01
3,
γ
a

=
−

0.
00

1,
ψ
1
,a

=
0.

97
,
ψ
2
,a

=
−

0.
03

,
σ
a

=
0.

00
7,

γ
v

=
0.

00
8,
ψ
1
,v

=
0.

99
,
ψ
2
,v

=
−

0.
76

,
σ
v

=
0.

00
3

S
er

ie
s

S
h
o
ck

M
ea

n
(S

td
D

)
M

ea
n

(S
td

D
)

M
ea

n
(S

td
D

)
M

ea
n

(S
td

D
)

H
ou

rs
A

.0
04

(.
0
0
1
)

0.
03

(.
0
0
5
)

0.
05

(.
0
0
8
)

0.
01

1
(.
0
1
7
)

V
.0

06
(.
0
0
2
)

0.
06

(.
0
1
4
)

0.
09

(.
0
2
1
)

0.
21

(.
0
5
0
)

A
+

V
0
.0

1
(.
0
0
2
)

0
.0

9
(.
0
1
8
)

0
.1

4
(.
0
2
8
)

0
.3

2
(.
0
6
7
)

O
u
tp

u
t

A
0.

20
(.
0
1
7
)

0.
26

(.
0
2
1
)

0.
28

(.
0
2
3
)

0.
35

(.
0
2
6
)

V
.0

01
(.
0
0
0
)

.0
04

(.
0
0
1
)

.0
07

(.
0
0
1
)

0.
02

(.
0
0
2

A
+

V
0
.2

0
(.
0
1
7
)

0
.2

6
(.
0
2
2
)

0
.2

9
(.
0
2
4
)

0
.3

7
(.
0
3
0
)

S
to

ch
as

ti
c

T
re

n
d

α
=

0.
34

,
β

=
0.

99
,
δ 0

=
0.

01
3,
γ
a

=
0,
ψ
1
,a

=
1,
ψ
2
,a

=
−

0.
06

,
σ
a

=
0.

00
7,

γ
v

=
0.

00
7,
ψ
1
,v

=
1,
ψ
2
,v

=
−

0.
81

,
σ
v

=
0.

00
3

S
er

ie
s

S
h
o
ck

M
ea

n
(S

td
D

)
M

ea
n

(S
td

D
)

M
ea

n
(S

td
D

)
M

ea
n

(S
td

D
)

H
ou

rs
A

.0
01

(.
0
0
0
)

0.
01

(.
0
0
2
)

0.
02

(.
0
0
3
)

0.
04

(.
0
0
6
)

V
.0

06
(.
0
0
1
)

0.
06

(.
0
0
9
)

0.
10

(.
0
1
5
)

0.
25

(.
0
3
6
)

A
+

V
.0

0
8

(.
0
1
5
)

0
.0

7
(.
0
1
1
)

0
.1

1
(.
0
1
8
)

0
.2

9
(.
0
4
2
)

O
u
tp

u
t

A
0.

18
(.
0
1
5
)

0.
21

(.
0
1
8
)

0.
22

(.
0
1
9
)

0.
25

(.
0
2
1
)

V
.0

02
(.
0
0
0
)

.0
18

(.
0
0
1
)

0.
03

(.
0
0
3
)

0.
08

(.
0
0
7
)

A
+

V
0
.1

9
(.
0
1
5
)

0
.2

3
(.
0
1
9
)

0
.2

5
(.
0
2
2
)

0
.3

3
(.
0
2
7
)

N
ot

e:
W

e
re

p
or

t
va

ri
an

ce
ra

ti
os

(s
im

u
la

te
d
/a

ct
u
al

)
fo

r
H

P
-fi

lt
er

ed
se

ri
es

.



This Version: January 25, 2011 40

Table 3: Prior Distribution for DSGE Model Parameters

Name Domain Density Para (1) Para (2)
α [0, 1) Beta 0.34 0.02
β fixed 0.99
δ0 fixed .013
ν IR+ Gamma 2.00 1.00
ρb [0, 1) Beta 0.95 0.02
σb IR+ InvGamma .017 or .012 4.00
g∗ fixed 1.00 or 1.20
ρg [0, 1) Beta 0.95 0.02
σg IR+ InvGamma .010 or .007 4.00
lnH∗ IR Normal 0.00 10.0
lnY0 IR Normal 0.00 100

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,
and Normal distributions; the upper and lower bound of the support for the Uniform distri-
bution; and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.

To estimate the stochastic growth version of the model, we set ψ1,a = ψ1,v = 1. The {A, V,B}
(benchmark) specification is estimated with Para(1) = .017 σb prior. The {A, V,G} specifi-
cation is estimated with Para(1) = .010 σg prior. The {A, V,B,G} specification is estimated
with Para(1) = .012 σb prior and Para(1) = .007 σg prior.
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Table 4: Labor Supply Elasticity Estimates

Unit Roots Data Set
Imposed Shocks Y/H, H, P Y/H, H, X Y/H, H, P, X

Mean 90% Intv. Mean 90% Intv. Mean 90% Intv.
No A, V, B 0.85 [ 0.34, 1.33] 0.82 [ 0.44, 1.17]

A, V, G 0.63 [ 0.35, 0.89] 1.56 [ 0.93, 2.17]
A, V, B, G 0.70 [ 0.33, 1.05] 0.77 [ 0.38, 1.14] 0.17 [ 0.05, 0.28]

Yes A, V, B 0.30 [ 0.06, 0.53] 0.60 [ 0.30, 0.88]
A, V, G 0.42 [ 0.17, 0.64] 1.83 [ 1.05, 2.60]
A, V, B, G 0.35 [ 0.07, 0.63] 0.96 [ 0.33, 1.54] 0.12 [ 0.03, 0.22]
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Table 5: Importance of Technology Shocks

Unit Roots Data Set
Imposed Shocks Series Y/H, H, P Y/H, H, X Y/H, H, P, X

Mean (StdD) Mean (StdD) Mean (StdD)
No A, V, B Hours 0.11 (.066) 0.05 (.025)

Output 0.26 (.040) 0.26 (.038)

A, V, G Hours 0.08 (.046) 0.22 (.084)

Output 0.25 (.037) 0.33 (.047)

A, V, B, G Hours 0.10 (.060) 0.07 (.038) 0.01 (.008)

Output 0.26 (.040) 0.27 (.043) 0.22 (.031)

Yes A, V, B Hours 0.01 (.009) 0.03 (.015)

Output 0.20 (.028) 0.23 (.033)

A, V, G Hours 0.02 (.010) 0.20 (.063)

Output 0.21 (.029) 0.32 (.044)

A, V, B, G Hours 0.02 (.014) 0.05 (.030) .002 (.002)

Output 0.21 (.030) 0.25 (.040) 0.19 (.026)

Weighted Hours 0.02 0.05 0.01
Output 0.21 0.25 0.22

Notes: Variance ratios are in bold for model specifications that attain a posterior model
probability of 3% or more. The last two rows (Weighted) contain weighted averages based
on the marginal likelihoods in Table 6.
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Table 6: Log Marginal Likelihood Differentials and Posterior Probabilities

Unit Roots Data Set
Imposed Shocks Y/H, H, P Y/H, H, X Y/H, H, P, X

ln p(Y ) (Prob.) ln p(Y ) (Prob.) ln p(Y ) (Prob.)
No A, V, B -11.7 (.000) -3.32 (.035)

A, V, G -3.38 (.032) -12.6 (.000)

A, V, B, G -6.01 (.002) -5.63 (.003) 0.00 (.992)

Yes A, V, B -8.67 (.000) -7.33 (.001)

A, V, G 0.00 (.932) -15.01 (.000)

A, V, B, G -3.32 (.034) 0.00 (.961) -4.82 (.008)

VAR(4), Minnesota Prior 54.72 28.97 57.30

Notes: For each data set, the log marginal likelihood differences are computed relative to the
DSGE model specification with the highest marginal likelihood. The log marginal likelihoods
for these specifications are 2278.12, 1951.07, and 2820.11, respectively. The calculation of
posterior probabilities is based on equal prior probabilities and excludes the VAR.
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Table 7: Calibration of Variable Capital Utilization Model (ν = 0.72)

ζ = 0 ζ = 0.2 ζ = 1 ζ = 2 ζ = 5
Neutral Technology Shock Parameters

ψa,1 0.974 0.974 0.985 0.9846 0.985
ψa,2 -0.027 -0.027 -0.004 0.0367 0.094
σa .0070 .0067 .0053 0.0048 .0043

Decomposition of Hours
Mean (StdD) Mean (StdD) Mean (StdD) Mean (StdD) Mean (StdD)

A 0.03 (.005) 0.04 (.006) 0.02 (.004) 0.02 (.003) 0.02 (.003)

V 0.06 (.014) 0.08 (.020) 0.12 (.030) 0.16 (.039) 0.21 (.055)

A,V 0.09 (.018) 0.12 (.025) 0.15 (.033) 0.18 (.042) 0.23 (.057)

Decomposition of Output
Mean (StdD) Mean (StdD) Mean (StdD) Mean (StdD) Mean (StdD)

A 0.26 (.021) 0.28 (.023) 0.23 (.019) 0.23 (.020) 0.24 (.021)

V .004 (.001) .007 (.001) 0.02 (.003) 0.03 (.005) 0.05 (.009)

A,V 0.26 (.022) 0.29 (.024) 0.25 (.021) 0.27 (.022) 0.29 (.025)

Notes: ζ is the elasticity of capital utilization with respect to the rental rate. The parameter
values for θ(−a) are the same as in Table 2: α = 0.34, β = 0.99, δ0 = 0.013, ψ1,v = 0.99,
ψ2,v = −0.76, σv = 0.003. The first column (ζ = 0) corresponds to the case of constant
utilization and reproduces the variance ratios from Table 2. Since for ζ = 0 measured TFP
corresponds to the neutral technology shock, the values for θ(a) correspond to the posterior
means reported in Table 1.
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Table 8: Estimation of Variable Capital Utilization Model

Data Set
Y/H, H, P Y/H, H, P, TCU Y/H, H, P, E

Selected Parameter Estimates
Mean 90% Intv. Mean 90% Intv. Mean 90% Intv.

ν 0.457 [0.158, 0.737] 0.346 [0.105, 0.570] 0.459 [0.160, 0.753]
ζ 0.238 [0.047, 0.426] 1.703 [0.969, 2.431] 0.746 [0.310, 1.168]
ψa,1 0.984 [0.975, 0.994] 0.981 [0.965, 0.996] 0.964 [0.941, 0.989]
ψa,2 -0.110 [-0.247, 0.016] -0.130 [-0.274, 0.011] -0.168 [-0.322, 0.012]
σa .0068 [.0062, .0074] .0057 [.0052, .0062] .0057 [.0051, .0062]

Decomposition of Hours
Mean (StdD) Mean (StdD) Mean (StdD)

A 0.02 (.015) 0.01 (.094) 0.02 (.022)

V 0.04 (.032) 0.07 (.076) 0.10 (.099)

A,V 0.06 (.042) 0.09 (.082) 0.12 (.110)

Decomposition of Output
Mean (StdD) Mean (StdD) Mean (StdD)

A 0.24 (.038) 0.26 (.045) 0.24 (.046)

V .005 (.003) 0.02 (.012) 0.02 (.011)

A,V 0.24 (.039) 0.28 (.051) 0.25 (.052)

Notes: The estimation based on the {Y/H,H, P} data set treats capital utilization as a
latent variable. In the other two estimations, utilization is treated as observable (with
measurement error). The data set includes either capacity utilization data from industrial
production (TCU) or electricity usage survey data (E).
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Figure 1: VAR Responses, Actual versus Simulated Data

Note: The figure depicts 90% credible bands for a VAR(4) (dotted, blue) estimated based on
actual data and posterior mean responses for VAR(4)’s estimated on long samples of DSGE
model generated observations with ν = 0.2 (red, solid) and ν = 2.0 (green, dashed).
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Online Appendix

Appendix A. Data Construction

Appendix A.1. Raw Data Series

All raw data series retrieved from the Bureau of Economic Analysis (BEA; www.bea.gov)

and the Bureau of Labor Statistics (BLS; www.bls.gov) for the period 1948:Q1–2006:Q4 were

current as of April 19, 2007.

National Income and Product Accounts (NIPA-BEA)

1. Table 1.1.5: Consumption of Durable Goods (CDt), Change in Inventories (ChInvt)

2. Table 1.7.5: Gross National Product (GNPt)

3. Tables 2.3.3 and 2.3.5: Quantity Index (QCONSit) and Nominal (CONSit) Nondurables

Consumption (excluding Energy) and Services (excluding Housing)24

4. Table 3.9.5: Government Investment in Equipment (GovIEQt), Government Invest-

ment in Structures (GovISTt)

5. Table 5.3.5: Private Fixed Investment in Equipment (PrivIEQt), Private Fixed Invest-

ment in Structures (PrivISTt)

Fixed Asset Tables (FAT-BEA)

1. Table 5.3.4: Official Price Index for Investment in Equipment (OPIEQt)

Bureau of Labor Statistics(BLS)

1. Aggregate Hours Index (Ht), BLS ID PRS85006033

2. Civilian Noninstitutional Population +16 (Pop16t), BLS ID LNU00000000

Cummins and Violante (2002), 1947–2000

1. Annual Quality-Adjusted Price Index for Investment in Equipment (QAPIEQCV
year)

2. Annual Quality-Adjusted Depreciation Rates for Total Capital (δCVyear)

24Goods i correspond to nondurables consumption in food, clothing and shoes, and others, and services
in household operations, transportation, medical care, recreation, and others.
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Capital Utilization Data

The data is available from the Statistics & Historical Data page for Principle Economic

Indicators – Industrial Production and Capacity Utilization (G.17) at

www.federalreserve.gov/econresdata/releases/statisticsdata.htm.

1. Electric Power Use: Manufacturing and Mining, Total industry from the survey of

industrial electric power conducted by the Board of Governors of the Federal Reserve

System. The voluntary survey was discontinued with the publication on December 15,

2005, of data for October 2005 since the response rate dropped significantly during the

early 2000s.

2. TCU: capacity utilization: total industry provided by the Board of Governors of the

Federal Reserve System. The Federal Reserve Board constructs estimates of capac-

ity utilization for a given industry by dividing an output index by a capacity index.

Capacity indexes try to capture the so-called sustainable maximum output, that is,

the largest level of output that a plant can achieve given the resources available when

operating the plant. Capacity indexes are constructed for 89 detailed industries (71 in

manufacturing, 16 in mining, and 2 in utilities), which mostly correspond to industries

at the three- and four-digit NAICS level. In the estimation exercise, we use quarterly

averages of the monthly series on the percent capacity. The data are available from

1967:1.

Appendix A.2. The Relative Price of Quality-Adjusted Investment

We construct the relative price of quality-adjusted investment, P I
t , as a Tornquist aggregate

of the price index of quality-adjusted equipment investment and the price index of structures

investment. We use the price index of consumption, PC
t , as a proxy for the price of structures

investment.25 Based on P I
t and PC

t , we define the relative price of investment goods (using

the consumption good as numeraire) as

Pt =
P I
t

PC
t

.

25As is the standard in previous literature, we use the consumption deflator as the price index for investment
in structures (see Fisher (2006) and Canova et al. (2010)). This provides internal consistency in the way
we compute the quality-adjusted price index for total (equipment + investment) investment —one of the
elements of output is investment; hence, the alternative use of an output (instead of a consumption) deflator
potentially distorts the very same measure we are trying to compute: an investment deflator.
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Its inverse, Vt = 1
Pt

, is investment-specific technical change. We set V0 = 1
P0

= 1, that is, we

assume real capital is equal to capital in efficiency units in 1947.

Quarterly Quality-Adjusted Price Index for Investment in Equipment, QAPIEQt.

We use the U.S. 1947-2000 annual series provided by Cummins and Violante (2002) for the

price index of equipment investment, QAPIEQCV
year, and impute the quarterly movements

of the official FAT-BEA price index of equipment investment, OPIEQt, using the Denton

method. For the years after 2000, we use the official price index OPIEQt, rescaled such that

it equates the value in Cummins and Violante (2002) in the year 2000. Thus, we assume

that the hedonic methods used to compute the official price index correctly quality-adjust

most types of equipment investment after 2000.

Quarterly Quality-Adjusted Price Index for Total Investment, P I
t . We use a Torn-

quist price index aggregate that weights growth rates of the price index of investment in

equipment and the price index of investment in structures by their nominal shares sIEQt and

sISTt . Nominal equipment investment is the sum of private equipment investment (PrivIEQt),

government equipment investment (GovIEQt), changes in inventories (ChInvt), and con-

sumer durables (CDt). Nominal structures investment is the sum of private structures in-

vestment (PrivISTt) and government structures investment (GovISTt). The growth rate of

the quarterly quality-adjusted price index for total investment is

λ(P I
t ) =

(
sIEQt + sIEQt−1

2

)
λ(QAPIEQt) +

(
sISTt + sISTt−1

2

)
λ(PC

t ),

where λ(xt) = (xt − xt−1)/xt and changes in the price index for consumption goods, λ(PC
t ),

serve as proxy for inflation in the price of structures. The level of quarterly quality-adjusted

price index for total investment is recovered recursively,

P I
t = P I

t−1[1 + λ(P I
t )].

We use the initial value P I
0 suggested in Cummins and Violante (2002).

Quarterly Price Index for Consumption, PC
t . We use a Tornquist price index aggregate

that weights growth rates of price indexes for nondurables consumption (food, clothing

and shoes, and others) and services (household operations, transportation, medical care,

recreation, and others) by their nominal shares. Let PC,i
t be the price index for nondurable

consumption/service good i in quarter t computed as the ratio between nominal consumption
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of good i, CONSit, and the quantity index of good i, QCONSit. Let sit be the corresponding

nominal share of good i in period t. Then, the growth rate of the price index for consumption

is

λ(PC
t ) =

∑
i

sit + sit−1
2

λ(PC,i
t ).

The level of the consumption price index is recovered recursively,

PC
t = PC

t−1 [1 + λ(PC
t )],

where we set PC
0 such that the initial relative price of investment is equal to one; see below.

Appendix A.3. Neutral Technical Change

The series of neutral technical change is computed using measures of real output Yt, real

capital Kt, and labor input Ht, together with an estimate of the input shares of production.

Real output Yt is computed as the nominal gross national product, GNPt, deflated by Pt. We

convert output, capital, and hours in per capita terms dividing by civilian noninstitutional

population Pop16t. We explicitly consider capital quality improvement represented by the

historical fall in the real price of investment. To do so, we build quarterly series for investment

in efficiency units and physical depreciation rates that we use to construct series of quality-

adjusted capital stock. Quality adjustments substantially change the series of capital — real

capital falls below capital in efficiency units and affects the trend of neutral technical change.

Quarterly Quality-Adjusted Investment, Xt. Total investment in efficiency units is

defined as total deannualized nominal investment deflated by the quality-adjusted price of

investment,

Xt =
InvEQt + InvSTt

P I
t

.

Quarterly Quality-Adjusted Depreciation Rates, δt. We build on the time-varying

annual physical depreciation rates for total capital provided in Cummins and Violante (2002)

for the period 1947-2000, δCVyear. For the years after 2000, we assume a constant depreciation

rate equal to that in year 2000. We define δ0 as the average quarterly depreciation rate over

the period 1955:Q3 to 2006:Q4: δ0 = 0.013.

Quarterly Quality-Adjusted Capital Stock, Kt. We have created quarterly quality-

adjusted investment series, Xt, and quarterly series for the quality-adjusted depreciation
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rate, δt. Then we can construct the series of capital in efficiency units recursively using the

perpetual inventory method,

Kt+1 = (1− δ0) Kt +Xt

where the initial capital stock in efficiency units, K0, is calibrated using the steady-state

investment equation
K0

Y0
=
V0 I0
Y0

(1− (1− δ0) exp (−λK))−1 .

We obtain the unconditional mean of the investment-output ratio is 0.284, and the quarterly

capital per capita growth rate averages 1.08%. This yields an initial quarterly capital-output

ratio of 11.6 (or 2.92 annually), which together with the initial value of real output pins down

an initial efficient capital stock.

Neutral Technical Change, At. The series of neutral technical change is computed as

At =
Yt

Kα
t H

1−α
t

,

where α =
∑

t
αt
T

is the baseline capital share in Ŕıos-Rull and Santaeulàlia-Llopis (2010).

Appendix B. The Model

In terms of the transformed variables, the deterministic steady state of our model is charac-

terized by the following set of equations:

q∗ = e
1

1−αγa+
α

1−αγv (B.1)

v∗ = eγv

R∗ =
q∗v∗

β
− (1− δ0)

K∗

Y ∗
=

αq∗v∗

R∗

X∗

Y ∗
=

(
1− 1− δ0

q∗v∗

)
K∗

Y ∗

I∗ = X∗

I∗

K∗
= 1− 1− δ0

q∗v∗

C∗

Y ∗
=

1

g∗
− I∗

Y ∗
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For the technology shock processes, let Ât = lnAt−lnA0−γat and V̂t = lnVt−lnV0−γvt.
For other variables Xt, let x̂t = ln(Xt/X

∗). Then the log-linearized equilibrium conditions

are given by (we scale the labor supply shock lnBt by the factor −ν such that b̂t = −ν lnBt):

r̂t = ŷt − (k̂t + ût) +
1

1− α
(ât + v̂t) (B.2)

ŵt = ŷt − ĥt

ĉt = Et[ĉt+1]−
R∗

R∗ + 1− δ0
Et[r̂t+1] +

1

1− α
Et[ât+1 + v̂t+1]

ĥt = ν(ŵt − ĉt) + b̂t

ŷt = g∗
C∗

Y ∗
ĉt + g∗

I∗

Y ∗
ît + ĝt

ŷt = (1− α)ĥt + α(k̂t + ût)−
α

1− α
(ât + v̂t)

k̂t+1 =

(
1− I∗

K∗

)
(k̂t −R∗ût) +

I∗

K∗
ît −

1− I∗/K∗

1− α
(ât + v̂t)

ût = ζr̂t.

Notice that δ′(ut) = δ1(1 + 1/ζ)u
1/ζ
t and δ

′′
(ut) = δ1(1 + 1/ζ)(1/ζ)u

1/ζ−1
t . Since in steady

state R∗ = δ′(u∗), we deduce that δ
′′
(u∗) = R∗/ζ, which delivers the last equation. The

exogenous shock processes evolve according to

ât = Ât − Ât−1 (B.3)

v̂t = V̂t − V̂t−1

Ât = ψ1,a(1− ψ2,a)Ât−1 + ψ2,aÂt−2 + σaεa,t

V̂t = ψ1,v(1− ψ2,v)V̂t−1 + ψ2,vV̂t−2 + σvεv,t

b̂t = ρbb̂t−1 + σbεb,t

ĝt = ρgĝt−1 + σgεg,t.

For the likelihood-based estimation of the technology shock processes and the complete

DSGE models, we use the Kalman filter. Since Ât and V̂t are potentially non-stationary, we

initialize the filter by assuming that all hat-variables are equal to zero in period t = −20,

where t = 1 corresponds to the first observation in our sample. In order to allow a marginal

data density comparison between the DSGE model and the VAR, the estimation in Section 4

is based on the likelihood function that conditions on the first four sample observations

(t = 1, . . . , 4). The variable utilization model is estimated based on the unconditional
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likelihood function. Parameter estimates for our benchmark specification are tabulated in

Table A-1.

Appendix C. Impulse Response to a Technology Shock

We will show that the impulse response function of labor productivity and hours worked

suffices to identify the labor supply elasticity. It is apparent from (B.2) that the two tech-

nology shocks enter the system in an identical manner, at least as far as detrended output,

consumption, wages, hours, capital, and the rental rate of capital are concerned. Hence,

without loss of generality we will focus on the response to an investment-specific technology

shock. We will assume that ψ1,v = 1 and define ṽt = v̂t/(1 − α) and omit the hats from all

other variables. Thus, the impulse response function has to satisfy the following equilibrium

conditions:

rt = yt − (kt + ut) + ṽt (C.1)

wt = yt − ht

ct = Et[ct+1]− r∗Et[rt+1] + Et[ṽt+1]

ht = ν(wt − ct)

yt = scct + siit

yt = (1− α)ht + α(kt + ut)− αṽt

kt+1 = (1− δ∗)(kt −R∗ut) + δ∗it − (1− δ∗)ṽt

ut = ζrt

ṽt = −ψ2,vṽt−1 +
σv

1− α
εv,t,

where r∗ = R∗/(R∗ + 1 − δ0), sc = g∗C
∗/Y ∗, si = g∗I

∗/Y ∗, and δ∗ = 1 − (1 − δ0)/(q∗v∗).
To construct the impulse response function, we assume that the system is in its steady state

prior to t = 1, that εv,1 = 1, and εv,t = 0 for t > 1. Thus, the time-path of the technology

growth process is given by

ṽt = (−ψ2,v)
t−1 σv

1− α
, Et[ṽt+1] = ṽt. (C.2)
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After period 1 there is perfect foresight along the impulse response, and for any variable xt

it is the case that Et[xt+1] = xt+1. With this in mind, we write the system for t > 1 as

wt = yt − ht (C.3)

∆ct+1 = r∗yt+1 − r∗(kt+1 + ut+1 − ṽt+1)− ṽt+1

ht = ν(wt − ct)

yt = scct + siit

wt = α(kt + ut − ṽt)− αht

kt+1 = (1− δ∗)(kt −R∗ζrt) + δ∗it − (1− δ∗)ṽt

rt =
1

1 + ζ
(yt − kt + ṽt)

The Frisch elasticity can be obtained from the response function of wages, i.e., labor pro-

ductivity, and hours worked, because it has to satisfy

∆ht+1 = ν(∆wt+1 + ∆ct+1). (C.4)

While we do not use direct information on consumption in our empirical analysis, we can

deduce from (C.3) that

∆ct+1 = r∗yt+1 − r∗(kt+1 + ut+1 − ṽt+1)− ṽt+1

= r∗(wt+1 + ht+1)− r∗(α−1wt+1 + ht+1)− ṽt+1

= r∗(1− α−1)wt+1 − ṽt+1.

Thus, for t > 1 the impulse response function of wages and hours needs to satisfy

∆ht+1 = ν

[
∆wt+1 + r∗(1− α−1)wt+1 − (−ψ2,v)

t σv
1− α

]
. (C.5)

Since r∗, α, ψ2,v, and σv can be identified independently from information other than that

contained in the impulse response function of hours and wages to a technology shock, we

deduce that ν is identifiable as long as the initial response of hours worked to a technol-

ogy shock is non-zero. Moreover, ν remains identifiable in the presence of variable capital

utilization ζ > 0.

Appendix D. Further Results

Table A-2 reports the full set of parameter estimates for the highest posterior probability

specifications based on the data sets Y/H, H, P, Y/H, H, X, and Y/H, H, P, X.
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Appendix E. Variable Capital Utilization

Calibration: To implement the indirect inference procedure to calibrate θ(a) = [ψ1,a, ψ2,a, σa]
′,

we need to construct the model implied measured TFP, which is given by

Amt =
Yt

(Km
t )αH1−α

t

, (E.1)

where Km
t stands for measured capital, that is, the economy’s capital stock when abstracting

from utilization dependent depreciation rates. Measured capital stock evolves as

Km
t+1 = (1− δ)Km

t +Xt. (E.2)

We add equations (E.1)-(E.2) to the equilibrium conditions of our model.

The indirect inference procedure to calibrate θ(a) can be described by the following steps:

1. Given θ(−a) = [α, β, δ0, ν, ζ, ψ1,v, ψ2,v, σv]
′, pick θs(a) ∈ T(a), where T(a) is a grid with

50,000 triplets defined as follows:

[0.25, 0.265, . . . , 1.00]⊗ [−0.2,−0.192, . . . , 0.2]⊗ [0.001, 0.0015, . . . , 0.01]

Thus, s = 1, . . . , 50, 000.

2. Simulate the model 10,000 periods26 setting lnA0 and γa to zero.

3. Fit an AR(2) model to the model implied measured TFP

lnAmt = ρm1,a lnAmt−1 + ρm2,a lnAmt−2 + σma ε
m
t (E.3)

and estimate it using least squares. Given the sample size, we do not have to worry

about the small sample effects of OLS.

4. Convert the least squares estimates of ρm1,a, ρ
m
2,a, and σma into θm(a).

5. Evaluate the discrepancy function Q(θ(a); θ(−a)) at θm(a). The discrepancy function is

defined as

Q(θ(a); θ(−a)) = [θ̄m(a),D − θm(a),S(θ(a), θ(−a))]
′V̄ −1(a) [θ̄m(a),D − θm(a),S(θ(a), θ(−a))].

We used the additional subscripts D and S to denote estimates computed based on

the actual and simulated data, respectively. In fact, θ̄m(a),D corresponds to the posterior

means reported in Table 1, and V̄(a) is the posterior covariance matrix.

26We simulate the model economy for 10,200 periods and discard the first 200.
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6. If s < 50, 000, go to step 1. Otherwise, compute

θ̂(a) = argminθ(a)∈T(a) Q(θ(a); θ(−a)),
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Table A-1: Posterior Estimates for Benchmark Specification

Series Y/H, H, P
Shocks A, V, B
Unit Root No
α 0.361 [0.326, 0.395]
ν 0.852 [0.344, 1.326]
γa -0.002 [-0.004, 0.000]
ψ1,a 0.983 [0.973, 0.993]
ψ2,a -0.103 [-0.242, 0.038]
σa 0.007 [0.007, 0.008]
γv 0.007 [0.007, 0.008]
ψ1,v 0.990 [0.986, 0.993]
ψ2,v -0.714 [-0.796, -0.632]
σv 0.003 [0.003, 0.004]
ρb 0.968 [0.952, 0.986]
σb 0.012 [0.010, 0.014]
lnH∗ -0.037 [-0.072, -0.004]
lnY0 9.137 [8.628, 9.692]
lnV0 -0.095 [-0.153, -0.037]

Note: The following parameters are fixed during the estimation: β = 0.99 and δ0 = 0.013.
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Table A-2: Posterior Estimates for Highest Post. Prob. Specifications

Series Y/H, H, P Y/H, H, X Y/H, H, P, X
Shocks A, V, G A, V, B, G A, V, B, G
Unit Root Yes Yes No
α 0.340 [0.306, 0.374] 0.323 [0.292, 0.353] 0.391 [0.381, 0.402]
ν 0.419 [0.168, 0.643] 0.964 [0.328, 1.539] 0.170 [0.048, 0.284]
γa 0.000 [-0.001, 0.001] 0.000 [-0.001, 0.001] -0.001 [-0.001, -0.001]
ψ1,a 1.000 1.000 0.950 [0.931, 0.968]
ψ2,a -0.020 [-0.148, 0.120] -0.006 [-0.089, 0.073] -0.088 [-0.203, 0.029]
σa 0.007 [0.006, 0.008] 0.007 [0.007, 0.008] 0.007 [0.007, 0.008]
γv 0.007 [0.006, 0.008] 0.007 [0.006, 0.008] 0.008 [0.007, 0.008]
ψ1,v 1.000 1.000 0.991 [0.988, 0.994]
ψ2,v -0.694 [-0.769, -0.620] -0.059 [-0.140, 0.025] -0.646 [-0.722, -0.570]
σv 0.003 [0.003, 0.004] 0.007 [0.006, 0.008] 0.003 [0.003, 0.004]
ρb 0.967 [0.951, 0.983] 0.953 [0.935, 0.970]
σb 0.011 [0.009, 0.013] 0.009 [0.008, 0.010]
ρg 0.962 [0.944, 0.982] 0.972 [0.952, 0.993] 0.963 [0.949, 0.978]
σg 0.038 [0.021, 0.056] 0.004 [0.003, 0.006] 0.010 [0.008, 0.011]
lnH∗ -0.028 [-0.067, 0.009] -0.024 [-0.064, 0.012] -0.027 [-0.049, -0.004]
lnY0 -32.284 [-49.319, -17.905] 8.377 [4.489, 12.753] 8.627 [8.548, 8.704]
lnV0 27.552 [17.036, 41.493] -0.044 [-3.062, 2.724] -0.148 [-0.229, -0.066]

Note: The following parameters are fixed during the estimation: β = 0.99, δ0 = 0.013, and
g∗ = 1.2 (in models with G-shock).
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