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• We want to solve finite-dimensional optimization problems. 1

• Our goal:

max
x∈X⊆<n

f (x)

where f is the objective function, X is the feasible set, and x∗, if it exists, a
maximum.

1
These slides borrow from ?, ? and ?.
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• Remark 1: the first order conditions of an unconstrained problem pose a
rootfinding problem. That is, we can solve our maximization with the
rootfinding algorithms we have already discussed.

• Remark 2: the Karush-Kuhn-Tucker first-order necessary conditions of a
constrained optimization problem pose a complementarity problem.
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• Weiertrass theorem: if f is continuous and X is nonempty, closed and
bounded, then f . has a maximum on X .

• x∗ is a local maximum of f if there is an ε-neighborhood N of x∗

such that f (x∗) ≥ f (x) ∀x ∈ N ∩ X .

• x∗ is a strict local maximum of f if, additionally, f (x∗) > f (x)
∀x 6= x∗ ∈ N ∩ X .

• If x∗ is a local maximum of f in the interior of X and f is 2ce
differentiable there, then f ′(x∗) = 0 and f ′′(x∗) is negative
semidefinite.

• Conversely, if f ′(x∗) = 0 and f ′′(x∗) is negative semidefinite in an
ε-neighborhood of x∗ contained in X , then x∗ is a local maximum; if,
additionally, f ′′(x∗) is negative definite, then x∗ is a strict local
maximum.

• If f is concave, X is convex, and x∗ is a local maximum of f , then x∗

is a global maximum of f on X .
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Direct Search Methods

• Direct search methods are derivative-free methods useful if f is rough or has
expensive (to compute) derivatives.

• They are definitely slow

• Convergence not guaranteed
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Golden Search Method

• Assume a univariate maximization problem bounded in [a, b].

• Pick x1 < x2 in [a, b] and evaluate f at x1 and x2

• Replace the original interval with [x1, b] if f (x1) < f (x2)

• Replace the original interval with [a, x2] if f (x1) ≥ f (x2)

• A local maximum must be contained in the new interval because the
endpoints of the new interval have smaller function values than a point on
the interval’s interior.

• We can repeat this procedure, producing a sequence of progressively smaller
intervals that are guaranteed to contain a local maximum.

• The golden search method is guaranteed to find the global maximum
when the function is concave.
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• How do we choose the interior evaluation points x1 and x2?

• Two criteria:

• The length of the new interval should be independent of whether the
upper or lower bound is replaced

• On successive iterations, one should be able to reuse an interior point
from the previous interaction so that only one new function evaluation
is preformed per iteration.
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• These conditions are uniquely satisfied by selecting:

xi = a + αi (b − a),

where

α1 =
3− 5.5

2
and α2 =

5.5 − 1

2

The value α2 is known as the golden ratio, an irrational constant (fascinating
for many), defined as the positive root of a+b

a = a
b = Golden ratio.
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Nelder-Mead Search Method

• This is the most famous simplex based direct search method.

• The simplex is so-named because it represents the simplest possible polytope
in any given space:2 a simplex in 1D is a line segment (1-simplex), a simplex
in 2D is a triangle (2-simplex), a simplex in 3D is a tetrahedro (3-simplex) n,
simplex in 4D pentachoron (4-simplex), etc.

• Specifically, an n-simplex is an n-dimensional polytope with n+1 vertices of
which the simplex is the convex hull.

2Recall that polytopes are geometric objects with flat sides (e.g. polytopes of two
dimensions are polygones, and in three dimensions polyhedrons).
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• A simplex based method constructs an evolving pattern of n + 1 points in
<n that are viewed as the vertices of a simplex.

• The iterative scheme forms a new simplex at each iteration by reflecting
away from the vertex with the smallest value of f , or by contracting toward
the vertex with he largest value of f . This way, the angles of every simplex
remain the same throughout, even though the simplex may grow or decrease
in size.
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• At each iteration of the Nelder Mead algorithm, we have a current simplex
defined by its n + 1 vertices, each a point in <n, along with the
corresponding values of f .

• Iteration k begins by ordering and labeling the current set of vertices as

xk1 , ..., x
k
n+1

such that
f k1 ≤ f k2 ≤ ... ≤ f kn+1

where f ki denotes f (xki ).
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• Because we seek to minimize f we refer to xk1 as the best point and to xkn+1

as the worst point.

• After ’calculating one or more trial points’ and evaluating f at these points,
the kth iteration generates a set of n + 1 vertices that define a different
simplex for the next iteration.
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• There are four possible operations that define those calculations:

• These operations are: reflection, expansion, contraction and shrinkage,
each associated with a scalar parameter.

• The coefficients (scalar parameters) of reflection, expansion,
contraction and shrinkage are respectively denoted by ρ, χ, γ and σ
and they satisfy ρ > 0, χ > 1, 0 < γ < 1 and 0 < σ < 1.

• The standard, nearly universal, choices for these parameters are:

ρ = 1, χ = 2, γ = .5, and σ = .5

The simplex shape undergoes already a noticeable change during an
expansion or contraction with these standard coefficients.
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• The Nelder-Mead iteration has 2 possible outcomes:

1 A single new vertex, the accepted point that replaces xn+1 (the worst
point) in the set of vertices for the next iteration; or,

2 If a shrink is performed, a set of n new points that, together with x1,
form the simplex at the next iteration.

• A kind of ’search direction’ is defined by xn+1 and x , the centroid of all
vertices except xn+1.
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• The Nelder-Mead algorithm:

Order Order the n + 1 vertices to satisfy f k1 ≤ f k2 ≤ ... ≤ f kn+1 using some
consistent tie-breaking rule.

Reflection Compute the reflection point xr from

xr = x + ρ (x − xn+1)

where x is the centroid of the n best vertices (all except xn+1), i.e.,
x =

∑n
i=1

xi
n

. Evaluate fr = f (xr ). If f1 ≤ fr ≤ fn, accept the
reflected point xr and terminate the iteration. Otherwise, if fr < f1
expand and if fr ≥ fn contract.
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• (Continued)

Expand If fr < f1, calculate the expansion point xe from

xe = x + χ (xr − x)

and evaluate fe = f (xe). If fe < fr , accept xe and terminate the
iteration; otherwise, if fe ≥ fr , accept xr and terminate the
iteration.
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• (Continued)

Contract If fr ≥ fn, perform a contraction between x and the better of xn+1

and xr .

• (i) Outside. If fn ≤ fr < fn+1 (i.e., xr is strictly better than
xn+1), perform an outside contraction, that is,

xc = x + γ (xr − x)

and evaluate fc = f (xc). If fc ≤ fr , accept xc and terminate
the iteration; otherwise, go to step 5 (perform a shrink).

• (ii) Inside. If fr ≥ fn+1 (i.e., xn+1 is strictly better than xr ),
perform an inside contraction, that is,

x ′
c = x − γ (x − xn+1)

and evaluate f ′c = f ′(xc). If f ′c ≤ fn+1, accept x ′
c and

terminate the iteration; otherwise, go to step 5 (perform a
shrink).
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• (Continued)

Shrinking Perform a shrink step. Define n new vertices from

vi = x1 + σ (xi − x1), i = 2, ..., n + 1

and evaluate f at these points. The vertices of the simplex at
the next iteration consist of x1, v2, ..., vn+1.
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Figure: Nelder-Mead 2D simplices after a reflection and an expansion step. The
original simplex is shown with a dashed line
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Figure: Nelder-Mead 2D simplices after an outside contraction, an inside
contraction and a shrink
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• The Nelder-Mead method has several interesting properties:

• A successful non-shrink iteration produces a new vertex whose function
value is strictly less than fn+1. This simple decrease requirement is
much weaker than those usually imposed in optimization convergence
theory

• It is particularly parsimonious in function evaluations per iteration
(compared to other direct search methods): it requires one evaluation
of f in step 2, 3 evaluations when termination occurs in step 3 or 4,
and n + 2 evaluations if a shrink step occurs.

• The next simplex is determined by the coordinates of the simplex
vertices and the order information about the vertices, not numerical
function values.

• In the expand step, the method in the original Nelder-Mead paper
accepts xe if f (xe) < f1 and accepts otherwise. Standard practice
today, as stated above, accepts the better of xr and xe if both give a
strict improvement over x1.
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• To completely specify the Nelder-Mead algorithm, we need to define an
initial simplex and termination criteria.

Initial Simplex A successful non-shrink iteration produces a new vertex
whose function value is strictly less than fn+1. This simple
decrease requirement is much weaker than those usually
imposed in optimization convergence theory

• If we knew well the function being optimized, we can
specify n + 1 suitable starting vertices.

• Otherwise, it is customary to specify a starting point in
<n that is taken as one of the initial simplex vertices,
then, the other n vertices are generated by: either
perturbing the starting point by a specified step along
the n coordinate directions; or, creating a regular
simplex with specified edge length and orientation.
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• (continued)

Termination Criteria For any non-derivative method, the issue of
termination is problematical as well as highly sensitive to
problem scaling.

• Since gradient information is unavailable, it is probably
impossible to verify closeness to optimality simply by
sampling f at a finite number of points.

• Most implementation of direct search methods
terminate based on two criteria that reflect the progress
of the algorithm: either the function values at the
vertices are close, or the simplex has become very small.
For example, Woods and Torczon suggest termination
when the current vertices x1, ..., xn+1 satisfy

max
2≤i≤n+1

||xi − x1|| ≤ ε max(1, ||x1||)

where ε is a tolerance.
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External Figure 1: Himmelblau’s function [3D with contours], 4 identical local
minima

External Figure 2: Nelder-Mead algorithm to the Himmelblau’s function [2D with
contours]
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Multidirectional Search Method, Torczon (1989)

• Each iteration is associated with a current simplex whose best (with lowest
function value) vertex is so labeled. Reflection, expansion and contraction
are defined as in the Nelder-Mead method, but these now involve the n
edges of the simplex emanating from the best vertex, so that the entire
simplex is reflected, expanded and contracted (Torczon (1989)).

• The iteration scheme succeeds when it finds a point of strict improvement
over the best vertex, in contrast to the much weaker condition in a
Nelder-Mead iteration of finding a strict improvement compared to the worst
point.

• Useful for efficiency in a parallel environment.
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Figure: Multidirectional search reflection, expansion and contraction.
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Newton-Raphson Method

• The Newton-Raphson method uses successive quadratic approximations to
the objective in the hope that the maxima of the approximants will converge
to the maximum of the objective.

• The Newton-Raphson method is identical to applying Newton’s method to
compute the root to the gradient of the objetive function.
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• It begins with the analyst supplying a guess x0 for the maximum of f . Given
xk , the subsequent iterate xk+1 is computed by maximizing the second-order
Taylor approximation to f about xk .

f (x) ≈ f (xk) + f ′(xk)(x − xk) +
1

2
(x − xk)T f ′′(xk)(x − xk)

• Solving the first-order condition,

f ′(xk) + f ′′(xk)(x − xk) = 0

that yields the iteration rule,

xk+1 ← xk − [f ′′(xk)]−1 f ′(xk)
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• Convergence,

• The Newton-Raphson method converges if f is 2ce continuously
differentiable and if the initial guess, x0, is ’sufficiently’ close to a local
maximum of f at which the Hessian, f ′′, is negative definite.

• The Newton Rapshon method can be robust to the starting value if f
is well behaved, for example, if f is globally concave.

• The Newton Rapshon method, however, can be very sensitive if the
function is not globally concave. The Hessian f ′′ must also be well
behaved at the optimum.
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• Remarks,

• The Newton-Raphson method requires computation of both the first
and second derivatives of the objective function.

• The Newton Rapshon method offers no guarantee that the objective
function value may be increased in the direction of the Newton step —
only guaranteed if the Hessian f ′′(xk) is negative definite; otherwise,
one may move toward a saddle point of f (if the Hessian is indefinite)
or even a minimum (if the Hessian is positive definite).
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Quasi-Newton Methods

• Similar to Newton-Raphson but replace the Hessian of the objective function
(or its inverse) with a negative definite approximation, guaranteeing that the
function value can be increased in the direction of the Newton step.

• This approximation to the inverse Hessian also eases the burden of
implementation and the cost of manipulation by avoiding to perform a linear
solve, and instead, employ updating rules that do not require
second-derivative information.
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• Hence, in quasi-Newton methods the direction search takes the form:

dk = −Bk f ′(xk)

where Bk is an approximation to the inverse Hessian of f at the kth iterate
xk . The vector dk is called the Newton or quasi-Newton step.
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• The more robust quasi-Newton methods do not necessarily take the full
Newton step, but shorten it or lengthen it in order to obtain improvement
in the objective function.

• This can be done with a line search in which one seeks a step length s > 0
that (nearly) maximizes f (xk + s dk). Given the computed step length sk ,
one updates the iterate as follows:

xk+1 = xk + sk dk
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• Small digression on Line search methods:

• Golden Search is reliable but computationally inefficient.

• Armijo approach. The idea is to find the minimum power j such that

f (x + sd)− f (x)

s
≥ µf ′(x)Td

where s = ρj , 0 < ρ < 1, and 0 < µ < .5.

• The LHS is the slope of the line from the current iteration point to the
candidate for the next iteration.

• The RHS is the directional derivative at x in the search direction d ,
that is, the instantaneous slope at the current iteration point.

• That is, this approach is to backtrack from a step size of 1 until the
slope on the LHS is a given fraction µ of the slope on the RHS.

• The Armijo approach is both a method for selecting candidate values of
the step size s and a stopping rule.
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• (continued)

• Goldstein search. The idea is to find any value of s that satisfies

•
µ0f

′(x)Td ≤ f (x + sd) − f (x)

s
≤ µ1f

′(x)Td

for some values of 0 < µ0 ≤ .5 ≤ µ1 < 1.

• The Goldstein criterion is simply a stopping rule.
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• Quasi-Newton methods differ in how the inverse Hessian approximation Bk

is constructed and updated:

• Method of the Steepest Ascent, Bk = −I

• Using some curvature information:

• Davidson-Fletcher-Powell (DFP) method

• Broyden-Fletcher-Goldfarb-Shano (BFGS) method
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Method of Steepest Ascent

• Method of Steepest Ascent

• Set the Hessian to the identity matrix, Bk = −I

• This approach leads to a Newton step that is identical to the gradient
of the objective function at the current iterate,

dk = f ′(xk)
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• (continued)

• This choice of gradient as step is intuitively appealing because the
gradient always points in the direction which, to a first order, promises
the greatest increase in f . For this reason, this quasi-Newton method is
called the method of steepest ascent.

• This method is simple to implement, but it is numerically less efficient
in practice than other quasi-Newton methods that incorporate
information regarding the curvature of the objective function.
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• The information about the curvature of f is used to produce a sequence of
inverse Hessian estimates that satisfy two conditions:

• First, given that, for the Newton step

dk ≈ f ′′−1(xk)
[
f ′(xk + dk)− f ′(xk)

]
the inverse Hessian estimate Bk is required to satisfy the so-called
quasi-Newton condition:

dk = Bk+1
[
f ′(xk + dk)− f ′(xk)

]
• Second, the inverse Hessian estimate is required to bet both symmetric

and negative definite, as must be true of the inverse Hessian at a local
maximum. The negative definiteness of the Hessian estimate assures
that the objective function value can be increased in the direction of
the Newton step.
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Davidson-Fletcher-Powell (DFP) method

• Davidson-Fletcher-Powell (DFP) method

• The DFP method uses the updating scheme

B ← B +
ddT

dTu
− BuuTBT

uTBu

where
d = xk+1 − xk and u = f ′(xk+1)− f ′(xk)
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Broyden-Fletcher-Goldfarb-Shano (BFGS)

• Broyden-Fletcher-Goldfarb-Shano (BFGS) method

• The BFGS method uses the updating scheme

B ← B +
1

dTu

(
wdT + dwT − wTu

dTu
ddT

)
where

w = d − Bu
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• Quasi-Newton methods are susceptible to certain problems. Notice that in
both update formulas we divide by dT u.

• If this value becomes very small in absolute value, numerical instabilities will
appear. A rule to monitor whether it becomes too small or not is,

|dTu| < ε||d || ||u||

where ε is the precision of the computer.
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