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Introduction

• Equilibria are often expressed as nonlinear systems,

• A Root (a zero) of f : <n → <n is,

f (x) = 0

• A fixed point of f : <n → <n is

f (x) = x

But see the fixed point of f (x) is the root of f (x)− x = 0.

• We examine numerical methods for solving these nonlinear equations in
1-dimensional and n-dimensional problems , n <∞.
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Univariate Problems

• Goal: Solve f (x) = 0 with f : < → < 1

This is 1 equation and 1 unknown.

• We want to learn how to solve that nonlinear equation.

1
These slides rely heavily on Chapter 5 in Judd (1998).
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Bisection Method

• Intermediate Value Theorem (IVT): if a continuous real-valued f that is
defined on an interval assumes two distinct values, then it must assume all
values in between.

In particular, if f is continuous, and f (a) and f (b) have different signs, then
f must have at least one root x ∈ [a, b].

• The bisection method uses this result repeatedly to compute a zero.
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• The workings of the iteration scheme,

Consider the interval [xL, xR ], with f (xL) < 0 and f (xR) > 0. To bisect

[xL, xR ] means to compute xM = xL+xR

2 , the midpoint of [xL, xR ], and
evaluate f at xM .

• If f (xM) = 0 we are done.

• If f (xM) < 0, the IVT says there is a zero of f in (xM , xR). We then
bisect the interval (xM , xR).

• If f (xM) > 0, the IVT says there is a zero of f in (xL, xM). We then
bisect the interval (xL, xM).

• Bisection applies this procedure repeatedly, constructing successively smaller
intervals containing zero.

• Note: There could be zeros in (xL, xM) and (xM , xR), but our objective is to
find a zero, not all zeros.
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• Stopping Rules:

A stopping rule computes some distance to a solution, then stops the
iteration when that distance is small.

In the case of bisection, is xR − xL a good estimate of that distance?. It will
overestimate the distance because the zero is bracketed.
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We stop the iteration scheme in either of two cases:

• First, when the bracketing interval is so small that we do not care about any
further precision.

This is controlled by our choice of ε:

• ε = 0 is nonsense.

• ε = 10n is nonsense in machines with at most n − 1 digits of accuracy.

• If xR and xL are of the order 10n, demanding a xR − xL < ε = 10n−k

with k bigger than the machine precision is nonsense. For example,
given n = 10, choosing k = 15 if the machine has a 12-digit precision
is nonsense. If our preferred choice for ε is that small, 10n−k , we can
call for a relative change test of the form xR − xL < ε(|xR |+ |xL|) to
adjust for the machine’s precision.

• If the solution is close to x = 0, and xL and xR converges to zero then
xR − xL < ε(|xR |+ |xL|) would have problems. We can solve this by
adding a 1, hence, choosing xR − xL < ε(1 + |xR |+ |xL|).
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• Second, we stop when f (xM) is less than the expected error in calculating f .

This is controlled by δ:

• Some times the evaluation of f at xM may be subject to a variety of
numerical errors, then δ may be larger than the machine precision.

• Some times we may want an x that makes f (x) small, not necessarily
zero, then we choose δ to be the maximal value that satisfies that
purposes.
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• Convergence:

• Bisection, have we found a pair xL and xR that bracket a zero, always
converges.

• It does so, but slow. It is a linear convergent iteration. Each iteration
reduces the error by only 50%, that is, it takes more than tree
iterations to add a decimal digit of accuracy.
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• Bisection Algorithm:

• Step 0. Initialize and bracket a zero: find xL < xR such that
f (xL)f (xR) < 0, and choose stopping rule parameters, ε, δ > 0

• Step 1. Compute midpoint: xM = xL+xR

2 and f (xM)

• Step 2. Change the bounds: if f (xL)f (xM) < 0, then xR = xM and do
not change xL; else then xL = xM and do not change xR .

• Step 3. Check stopping rule: if xR − xL ≤ ε(1 + |xL|+ |xR |) or if
f (xM) < δ, then STOP and report solution at xM ; else go to step 1.
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Newton’s Method

• Goal: Solve f (x) = 0 with f : < → < and f ∈ C 1.

• Newton’s method reduces a nonlinear problem to a sequence of linear
problems, where the roots are easy to compute.

• Uses smoothness properties of f to approximate f locally in a linear
fashion.

• Approximates a root of f with the zeros of the linear approximations.

Raül Santaeulàlia-Llopis (Wash.U.) Nonlinear Systems Spring 2016 12 / 64



• The workings of the iteration scheme,

• Suppose our current guess is xk . Then we construct a linear
approximation to f at xk , g(x),

g(x) ≡ f (xk) + f ′(xk)(x − xk))

• Instead of solving for a zero of f , we solve for a zero of g , hoping that
the two functions have similar zeros.

• Our new guess, xk+1, will be the zero of g(x), that is,

0 ≡ f (xk) + f ′(xk)(x − xk)), xk+1 = xk −
f (xk)

f ′(xk)
(1)

The new guess will likely not be a zero of f , but the sequence xk my
converge to a zero of f . Sufficient conditions for convergence
established in the next theorem.
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• Convergence:

• Theorem 2.1 Judd (1998): Suppose that f is C2 and that f (x∗) = 0. If

x0 is sufficiently close to x∗, f ′(x∗) 6= 0 and
∣∣∣ f ′′(x∗)
f ′(x∗)

∣∣∣ <∞, the Newton

sequence xk defined by (1) converges to x∗ and it is quadratically
convergent, that is,

lim
k→∞

sup
|xk+1 − x∗|
|xk − x∗|2

.

•
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• Trade-off between Bisection and Newton:

• Bisection is safe, always converges, but it is slow. Newton gains in
speed but may not converge.

• We must search for the right balance between these 2 features,
convergence and speed.
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• Stopping Rules:

We typically apply a 2-stage test,

• First, we check if the last few iterations have moved much, and we
conclude we have converged if |xk − xk−l | < ε(1 + |xk |) for
l = 1, 2, ..., L. Usually L=1.

• Second, we check if f (xk) is ’nearly’ zero. We stop if f (xk) ≤ δ for
some prespecified δ.
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• Newton’s Algorithm:

• Step 0. Initialize: Choose a starting point x0 and set k = 0.

• Step 1. Compute next iterate:

xk+1 = xk −
f (xk)

f ′(xk)

• Step 2. Check stopping criterion: if |xk − xk−1| < ε(1 + |xk |) go to step
3, else go to step 1.

• Step 3. Report results and STOP: if f (xk+1) < δ report success in
finding a zero, otherwise report failure.
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• Problem with a Loose Stopping Rule

• Even if we find a point that satisfies the ε and δ stopping rules, it may
still not be a zero, or close to one.

• See f (x) = x6 plotted in Figure 1.

• The problem is that f (x) = x6 is flat at its zero. If a function is nearly
flat at a zero, convergence can be quite slow, and loose stopping rules
may stop far from the true zero.

Raül Santaeulàlia-Llopis (Wash.U.) Nonlinear Systems Spring 2016 18 / 64



−2 −1 0 1 2
0

10

20

30

40

50

60

70

Figure: [Example 1] f (x) = x6
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• Pathological Examples I

• See f (x) = x
1
3 e−(x2) plotted in Figure 2.

• The first pathology strives from its iterative scheme,

xk+1 = xk

(
1− 3

1− 6x2
k

)
(2)

• First, for xk small, (2) is xk+1 = −2xk , see Figure 3.

• Second, for xk large, (2) is xk+1 = xk
(
1 + 2

x2
k

)
, which diverges but

slowly, Figure 3.

• That is, only if x0 = 0, (2) converges to zero.

• The second pathology derives from the fact that e−(x2) factor squashes
f (x) at large |x |, leading Newton’s method to believe that it is getting
close to zero, while it does not (though the limit of is).
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Figure: [Example 3] xk path from Iteration Scheme in Equation (2)
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• Pathological Examples II

• Newton’s method can also converge to a cycle.

• See Figure 5.3 in Judd (1998)

• In this cycle, Newton method would provide a root if it the initial guess
is close enough to the root. This shows the importance of a good
initial guess.
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Secant Method

• The computation of f ′(x) is necessary in the Newton method, but it may be
costly.

• Substitute f ′(x) with an approximate of it, the slope of the secant of
between xk−1 and xk .

Raül Santaeulàlia-Llopis (Wash.U.) Nonlinear Systems Spring 2016 24 / 64



• The iteration scheme is then,

xk+1 = xk −
f (xk)

f (xk )−f (xk−1)
xk−xk−1

(3)

• The algorithm for the secant method is, otherwise, identical to the Newton
method.
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• Convergence is slower in terms of the # of required evaluations of f because
of the secant approximation to the derivative.

• However, the running time can be much less because the secant method
never evaluates f ′.

• The convergence rate is between linear and quadratic.

• Theorem 3.1 Judd (1998). If f (x∗) = 0, f ′(x∗) 6= 0 and f ′(x) and f ′′(x) are

continuous near x∗, then the secant method converges at the rate (1+5.5)
2 ,

that is

lim
k→∞

sup
|xk+1 − x∗|

|xk − x∗|
(1+5.5)

2

.
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Fixed-Point Iteration

• Recall we can always rewrite root finding problems as fixed-point problems.

• Fixed-point problems, f (x) = x , suggests the iteration

xk+1 = f (xk)
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• Consider equation
x3 − x − 1 = 0 (4)

• Equation (4) can be rewritten in fixed-point form as:

• either x = (x + 1)
1
3

xk+1 = (xk + 1)
1
3 (5)

• or x = x3 − 1
xk+1 = x3

k − 1 (6)

• If we take x0 = 1, then (5) converges to a solution while (6) diverges to
−∞. That is, some transformations can turn unstable schemes into stable
schemes.
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• Remark: The secant method and the fixed-point iteration method do not
directly generalize to multivariate problems.

Raül Santaeulàlia-Llopis (Wash.U.) Nonlinear Systems Spring 2016 29 / 64



Multivariate Problems

• Goal: Solve f (x) = 0 with f : <n → <n,

f 1(x1, x2, ..., xn) = 0,

f 2(x1, x2, ..., xn) = 0,

.

.

.

f n(x1, x2, ..., xn) = 0

This is a list of n equations and n unknowns.

• We want to learn how to solve that nonlinear system of equations.
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Gauss-Jacobi

• Given a known value of xk(i.e., a vector), we use the ith equation to
compute the ith component of unknown xk+1, the next iterate.

• Formally xk+1 is defined in terms of xk by

f 1(xk+1
1 , xk2 , ...x

k
n−1, x

k
n ) = 0,

f 2(xk1 , x
k+1
2 , ...xkn−1, x

k
n ) = 0,

.

.

.

f n(xk1 , x
k
2 , ...x

k
n−1, x

k+1
n ) = 0

• Each equation above is a single nonlinear equation with one unknown xk+1
i .

• That is, Gauss-Jacobi algorithm reduces the problem of solving for n
unknowns simultaneously in n equations to that of repeatedly solving n
equations with one unknown → we can apply the univariate methods learned
in the previous section.

Raül Santaeulàlia-Llopis (Wash.U.) Nonlinear Systems Spring 2016 31 / 64



• Indexing

• Gauss-Jacobi is affected by the indexing scheme for the variables and
equations. Which equation should we use for which variable and in
which order?.

• There are n! possible combinations and no natural choice.

• It may help to choose an indexing that resembles back-substitution.
That is, if some equation depends on only one unknown, then that
equation should be equation 1 and that variable should be variable 1.
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• Linear Gauss-Jacobi method

• There is little point in solving each xk+1
i precisely, since we must solve

each equation again in the next iteration.

• We could solve for each xk+1
i a bit loosely in order to save steps.

• One way is to take a single Newton step to approximate each xk+1
i .

• The resulting scheme, known as the linear Gauss-Jacobi method is,

xk+1
i = xki −

f i (xk)

f ixi (x
k)
, i = 1, ..., n
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Gauss-Seidel

• In Gauss-Jacobi we have used the new guess of xi , x
k+1
i , only after we have

computed the entire vector of new values xk+1.

• In Gauss-Seidel, however, we use the new guess of xi , x
k+1
i , as soon as it

becomes available

• Formally xk+1 is defined in terms of xk (and xk+1
i ) by

f 1(xk+1
1 , xk2 , ..., x

k
n−1, x

k
n ) = 0,

f 2(xk+1
1 , xk+1

2 , ..., xkn−1, x
k
n ) = 0,

.

.

.

f n(xk+1
1 , xk+1

2 , ..., xkn−1, x
k+1
n ) = 0

• Again, we solve for xk+1
i sequentially, but we immediately use each new

component.
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• Indexing

• Gauss-Seidel is affected by the indexing scheme for the variables and
equations even more than in Gauss-Jacobi, because now indexing also
affects the way in which later results depend on earlier ones.
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• Linear Gauss-Seidel method

• Again, there is little point in solving each xk+1
i precisely, since we must

solve each equation again in the next iteration.

• Again, we could solve for each xk+1
i a bit loosely in order to save steps.

• Again, one way is to take a single Newton step to approximate each
xk+1
i .

• The resulting scheme, known as the linear Gauss-Seidel method is,

xk+1
i = xki −

f i

f ixi
(xk+1

i , ..., xk+1
i−1 , x

k
i , ..., x

k
n ), i = 1, ..., n
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• Few remarks on Gaussian methods,

• Gaussian methods (either Jacobi or Seidel), while often used, pose
some problems.

• Methods are most useful when the system is diagonally dominant —
non-convergence may arise otherwise.

• We can apply extrapolation and acceleration methods to attain or
accelerate convergence. However, convergence is at best linear.
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• Stopping Rules for Multivariate Systems

• If we are using an iterative scheme xk+1 = G (xk) (as GJacobi) and we
want to stop when ||xk − x∗|| < ε, we must at least continue until
||xk − x∗|| < (1− β)ε where we can approximate

β = max{ ||x
k−j+1−xk ||
||xk−j−xk || , j = 1, ..., L}

• We also want to check that f (xk) is close to zero, that is, ||f (xk)|| ≤ δ
for some small δ. This ||f (xk)|| ≤ δ implies trade-offs across different
equations, that is, some equations in f may be closer to zero at xk

than they are at xk+1, but a stopping rule will choose xk+1 over xk if
||f (xk+1)|| ≤ δ ≤ ||f (xk)||. To avoid this we can use the supnorm
instead of the euclidean norm.
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Fixed-Point Iteration

• We have strong constructive existence theory for the fixed points of
contraction mappings.

• Check our Dynamic Programming Slides.

Raül Santaeulàlia-Llopis (Wash.U.) Nonlinear Systems Spring 2016 39 / 64



Newton’s Method

• We start supplying a guess x0 for the root of f .

• Given xk , the subsequent iterate xk+1 is computed by solving the linear
rootfinding problem obtained by replacing f with its first-order Taylor
approximation about xk :

f (x) ≈ f (xk) + f ′(xk)
(
x − xk

)
= 0

where f ′(xk) is the Jacobian.

• This approach yields the Newton iteration scheme,

xk+1 ← xk −
[
f ′(xk)

]−1
f (xk)
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• Newton’s method converges if f is continuously differentiable and if the
initial value x0 is ’sufficiently’ close to ta root of f at with f ′ is invertible.

• There is however, no generally practical formula for determining what
’sufficiently’ close is.
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• Theorem 5.5.1. If f (x∗) = 0, det(f ′(x∗)) 6= 0 and f ′(x∗) is Lipschitz near
x∗, then for x0 near x∗, the sequence defined above satisfies

lim
k→∞

||xk+1 − x∗||
||xk − x∗||2

<∞

• As in univariate cases, Newton method is quadratically convergent.
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• Multivariate Newton’s Algorithm:

• Step 0. Initialize: Choose a starting point x0 and set k = 0.

• Step 1. Compute next iterate. Compute Jacobian Ak = f ′(xk), solve
Aks

k = −f (xk) for sk , and set xk+1 = xk + sk

xk+1 = xk −
f (xk)

f ′(xk)

• Step 2. Check stopping criterion: if ||xk − xk−1|| < ε(1 + ||xk ||) go to
step 3, else go to step 1.

• Step 3. Report results and STOP: if ||f (xk+1)|| < δ report success in
finding a zero, otherwise report failure.
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• Newton’s method can be robust to the starting value if f is well behaved.

• Newton’s method can be very sensitive to starting value, however, if the
function behaves erratically.

• Finally, in practice it is not sufficient for f ′ to be merely invertible at the
root. If f ′ is invertible but ill conditioned, then rounding errors in the
vicitinty of the root can make it difficult to compute a precise approximation
to the root using Newton’s method.
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Secant (Broyden) Method

• This is the most popular quasi-Newton method and multivariate
generalization of the univariate secant method.

• Broyden’s method generates a sequence of vectors xk and matrices Ak that
approximate the root of f and the Jacobian f ′ at the root, respectively.
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• Iteration Scheme. We begin guessing x0 for the root of the function and a
guess A0 for the Jacobian of the function at the root.

• How do we choose A0?

• A0 can be set equal to the numerial Jacobian of f at x0.

• A0 can be set to a rescaled identity matrix. This approach typically will
require more iterations to obtain a solution.
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• Given xk and Ak , one updates the root approximation by solving the linear
rootfinding problem obtained by replacing f with its first-order Taylor
approximation about xk :

f (x) ≈ f (xk) + Ak(x − xk) = 0

This step yields the root approximation iteration rule:

xk+1 ← xk −
(
Ak
)−1

f (xk)
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• Broyden’s method then updates the Ak by making the smallest possible
change, measured in the Frobenius matrix norm, that is consistent with the
secant condition, a condition that any reasonable Jacobian estimate should
satisfy:

f (xk+1)− f (xk) = Ak+1(xk+1 − xk)

This condition yields the iteration rule:

Ak+1 ← Ak −
[
f (xk+1)− f (xk)− Akdk

] (dk)T

(dk)Tdk

where dk = xk+1 − xk .
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Speeding it up.

• We can accelerate this method by avoiding the linear solve. We do so by
retaining and updating the Broyden estimate of the inverse of the Jacobian,
rather than that of the Jacobian itself.

• Broyden’s method with the inverse update generates a sequence of vectors
xk and matrices Bk that approximate the root of f and the inverse Jacobian
f ′−1 at the root, respectively. It uses the iteration rule

xk+1 ← xk − Bk f (xk)

and the inverse update rule,

Bk+1 ← Bk +
(dk − uk)(dk)TBk

(dk)Tuk

where uk = Bk
[
f (xk+1)− f (xk)

]
.

• Most implementations of Broyden’s methods employ the inverse update rule
because of its speed advantage.
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Convergence.

• Boryden’s method converges if f is continuously differentiable, if x0 is
’sufficiently’ close to a root of f at which f ′ is invertible, and if A0 and B0

are ’sufficiently’ close to the Jacobian or the inverse Jacobian of f at that
root.

• Like Newton’s method, the robustness of Broyden’s depends on the
regularity of f and its derivative.

• Broyden’s method may also have difficulty computing a precise root
estimate if f ′ is ill conditioned near the root.

• It is also important to note that the sequence approximants Ak and Bk need
not, and typically do not, converge to the Jacobian and inverse Jacobian,
even if xk converge to a root of f .
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• Broyden’s Algorithm:

• Step 0. Initialize: Choose a starting point x0, an initial Jacobian guess
A0 = I and set k = 0.

• Step 1. Compute next iterate: Solve Aks
k = −f (xk) for sk , and set

xk+1 = xk + sk

• Step 2. Update Jacobian guess: Set yk = f (xk+1)− f (xk) and

Ak+1 = Ak +
(yk − Aks

k)(sk)T

(sk)T sk

• Step 3: Check stopping criterion: if ||xk − xk−1|| < ε(1 + ||xk ||) go to
step 4, else go to step 1.

• Step 4. Report results and STOP: if ||f (xk+1)|| < δ report success in
finding a zero, otherwise report failure.
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• Important remarks:

• Outside of the special case of contraction mappings, none of these
methods is globally convergent (we could easily construct cases where
Newton’s method cycles).

• There are systematic ways to enhance convergence to a zero that
combine minimization ideas with the nonlinear equation approach.
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Enhancing Global Convergence

• There are strong connections between nonlinear equations and optimization
problems.

• If f (x) is C2, then the solution to minx f (x) is also a solution to the system
of first-order conditions f ′(x) = 0

• The converse is sometimes true as well. We may find a function F (x) such
that f (x) = F ′(x), in which case the zeros of f are exactly the local minima
of F . Such systems f (x) are called integrable.

• Then, since we have globally convergent schemes for minimizing F we can
use them to compute the zeros of f .

• Importantly, this approach has limited applicability because few systems
f (x) are integrable.
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• In one general sense, nonlinear equation problems can be converted to
optimization problems. Any solution to the system f (x) = 0 is also a global
solution to

min
x

n∑
i

f i (x)2

and any global minimum of
∑n

i f
i (x)2 is a solution to f (x) = 0.
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Powell’s Hybrid

• On the one hand, Newton’s method will converge rapidly if it converges but
it may diverge.

• On the other hand, the minimization idea above converges to something,
but it may do so slowly, and it may converge to a point other than a
solution to the nonlinear system.

• Since these approaches have complementary strengths and weaknesses, we
are tempted to develop a hybrid algorithm combining their ideas.
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• If we define SSR(x) = f i (x)2, then the solutions to the nonlinear equation
f (x) = 0 are exactly the global solutions to the minimization problem above.

• Perhaps, we can use values of SSR(x) to indicate how ell we are doing and
help restrain Newton’s method when it does not appear to be working.
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• Powell’s method modifies Newton’s method by checking if Newton step
reduces the value of SSR.

• Suppose that the current guess is xk .

• The Newton step is then sk = −f ′(xk)−1f (xk).

• Newton’s method takes xk+1 = xk + sk without hesitation.

• Powell’s method checks xk + sk before accepting it has the next
iteration.

• In particular, Powell’s method will accept xk + sk as the next iteration
only if SSR(xk + sk) < SSR(xk), that is, only if there is some
improvement in SSR.
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• These methods will converge to a solution f (x) = 0 or will stop if they come
too near a local minimum of SSR.

• If there is no such local minimum then we will get global convergence.

• If we do get stuck near a local minimum xm, we will know that we are not at
the global solution, since we will know that f (xm) is not zero and we can
continue by choosing a new starting point.
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Homotopy Continuation Methods

• Homotopy methods formalize the notion of deforming a simple problem into
a hard problem, computing a series of zeros of the intervening problems in
order to end with a zero to the problem of interest.

• This yields a globally convergent way to find the zeros in a multivariate
problem.
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• Homotopy functions, H(x , t), H : <n+1 → <n, H ∈ C0(<n+1).

• A homotopy function H that continuously deforms g into f is any
continuous function H where

H(x , 0) = g(x), H(x , 1) = f (x).

• In practice we take H(x , 0) to be a simple function with easily calculated
zeros, and H(x , 1) to be the function whose zeros we want.
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• For example

• The Newton homotopy is H(x , t) = f (x)− (1− t)f (x0) for some x0.
• At t = 0, H = f (x)− f (x0) which has a zero at x = x0.

• At t = 1, H = f (x).

This is a simple homotopy, since the difference between H(x , t) and
H(s, t) is proportional to t − s.

• The fixed-point homotopy is H(x , t) = (1− t)(x − x0) + tf (x) for
some x0. It transforms the function x − x0 into f (x).

• More generally, the linear homotopy is H(x , t) = tf (x) + (1− t)g(x)
which transforms g into f , since at t = 0, H = g and at t = 1, H = f .
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• Generically Convergent Euler Homotopy Method:

• Step 0. Choose an a ∈ <n and form the homotopy,
H(a, t, x) = (1− t)(x − a) + t(x − f (x)). Let x0 = a, s0 = 0 and
t0 = 0. Choose step size ε.

• Step 1. Given xi , si and ti compute xi+1 and ti+1. Let si+1 = si + ε.

• Step 2. If ti+1 > 1 go to Step 3; else go to Step 1.

• Step 3. Stop and report the last iterate of x as the solution.
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Remarks,

• Homotopy methods have good convergence properties, but they may
perform very slowly. In many homotopy methods, each step involves
computing a Jacobian; in such cases each step is as costly as a Newton step.

• Then, we can first use a homotopy method to compute a rough solution and
then use it as the initial guess for Newton’s method.

• Slow convergence of homotopy methods also implies it is not easy to satisfy
their convergence criterion. It seems useful to apply Newton’s method to the
final iterate of a homotopy method as a natural step to improve on the
homotopy result.
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